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1 Introduction

This document presents the report for D1.1 (”Classification of existing Valida-
tion Obligations and Tools”) of the IVOIRE project.
During the software development process, validation and verification play an
important role to ensure the quality of each development stage until the final
product. Verification checks that a system or piece of software meets its spec-
ification. This means that the program is proven to be correct concerning its
specification [89]. Verification answers the question: “Are we building the
software correctly?” In contrast, validation checks whether a model met the
stakeholder’s requirements [88]. It answers the question: “Are we building the
right software?”.

Proof obligations (POs) were introduced to tackle the former question, i.e.,
to check the model’s consistency with its specification. Here, it is also checked
whether a refinement preserves the properties described at abstract levels. For-
mally, POs are formulas extracted from the model which have to be proven.
POs are already used in a refinement-based software development process. Here,
POs are logical formulas that are extracted from the specification and checked
by different solvers. [38]

This report defines validation obligation (VO) tackling the second question.
In the following, we will describe how VOs are used in a refinement-based soft-
ware development process to validate requirements (see Section 2). Afterwards,
we will discuss the borderline between validation and verification (see Section 3).
We will also describe the validation tasks associated with the VOs (see Sec-
tion 5). Here, we also present an overview of existing validation tasks for the
modeling languages Alloy, ASM, B, Event-B, VDM, TLA+, Z, CSP, and Circus.

A glossary containing the basic terms can be found in Appendix A. This
report also includes a list of publications in the context of the IVOIRE project
Appendix D.

2 Validation Obligations Approach

The idea of a refinement-based software development process assumes that
a formal model is developed incrementally, i.e., step-by-step (see Figure 1).
This means, that a model’s refinement is created for each development step
(black/solid-line arrows). Later down the refinement chain, more requirements
are taken into account. VOs shall be used to ensure the presence of requirements
in a refinement-based software development process.

To achieve this, newly introduced requirements must be validated incremen-
tally at each model’s refinement. Additionally, there might be the need for
abstracting (illustrated by the blue/dotted arrows) or specializing/instantiating
(illustrated by the red/dotted arrows) the model for a domain expert, only fo-
cusing on specific requirements. Note that the concept of refinement is already
supported in some formalisms (e.g. B and Event-B), but the concept of multiple
distinct abstractions is novel, as far as we are aware.
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Figure 1: Refinement-based Software Development Process with VOs

We define the term of a VO as follows:

A validation obligation (VO) is a validation task (VT) associated
with one/many formal model(s) to check its/their compliance with
a particular requirement.

A VO has a name, and consists of a validation task together with its param-
eters. Here, the parameters are optional. There are also validation tasks that do
not expect any parameters. Executing a VO is done by executing the VO’s val-
idation task together with the parameters within a context resulting in TRUE
(successful) or FALSE (failed). The context could be a model, or even multi-
ple models. For example, the modeler could validate a requirement describing
a safety property for a single model, while trace-refinement checking requires
two models. Furthermore, each model can be an abstraction, specialization, or
instantiation in the refinement-based software development process as shown in
Figure 1. Validating a requirement succeeds if all associated validation tasks
yield successful results. Thus, a validation task can be one of many tasks which
are used to validate a single requirement.

Formally, the process of validation is described as a function validate which
executes a VO in a context (consisting of one or many models), resulting in a
boolean value:

validate : V → B
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V denotes the set of VOs, and B = {TRUE, FALSE} denotes the set of
booleans.

When introducing the VOs for each validation task in Section 5, we will use
the notation in this form:

VO
Name: <Name>
Task: <Task>
Context: < Model1, . . . ,Modeln >
Parameters: < p1, . . . , pn >

Information
Action: What has to be done?
Automatable: <Yes/No/Partial>
Optional Information ...

The information clarifies how a VO is discharged and whether it is automat-
able. Furthermore, it also describes special abilities of the corresponding VO,
e.g., a special ability of LTL model checking is the generation of a counter-
example.

2.1 Comparison with Proof Obligations

POs can be extracted from the model using pre-defined rules (e.g. a rule for
generating a PO for well-definedness). Furthermore, they are also discharged
by the static information the model provides. This often happens via automatic
proving but sometimes it has to be done manually.
In contrast, creating a VO is a manual process that has to be done by the
modeler. Thus, the modeler’s challenge is to define a VO with the correct
configurations to validate the desired requirement. While some VOs have to be
discharged by the modeler manually, there are also some VOs that are discharged
automatically (see Section 5).

2.2 Development

Requirements engineering and software development are highly entangled pro-
cesses. During the software development process, requirements are encoded
into the model incrementally. When validating those requirements, stakehold-
ers and developers get a better understanding of the system which might lead
to new requirements being discovered, or existing requirements being evolved or
changed. Figure 2 shows the modeling process from the VO’s perspective. First,
a requirement is implemented into a model and a VT is defined to show that
the model satisfies the requirement. A VT of a VO is executed in the context
of the model leading to the result being either TRUE (successful) or FALSE
(failure).

4



Figure 2: Relation of VO, VT, Requirement and Model

Once a VO is successfully discharged it is expected to hold in each following
refinement. Thus, the requirement is ensured to be fulfilled in each subsequent
element of the refinement chain. If it is not possible to discharge a require-
ment, the modeler may re-consider the requirement. Possible questions that the
modeler could then ask are:

• Did we translate the requirement poorly into a task or the model?

• Does the requirement collide with other requirements? As a result, we
may need to weaken or strengthen this or other requirements.

While modeling or validating a requirement, a behavior may be encountered
which is not recognized in the requirements yet. In Figure 2 this is shown by
the arrow going back from the model to the requirements and as the possible
outcome of the VO.
In the case that original requirements need to be reconsidered, it might be
necessary to change the original documents. This can also lead to cascading
changes in the models and the VOs.

2.3 Creating Validation Tasks

The creation of VTs is similar to the creation of models. One needs significant
knowledge about the modeling language, but also about the environment and
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the techniques to create solvable tasks. It is the modeler’s responsibility to
choose a suitable validation technique.

The choice of the technique will influence how the modeler formulates the
task e.g. the preservation of an invariant can be shown by model checking or
proving. When creating a task to validate a requirement, the modeler must be
aware of the available tools, and the complexity of the model as well as the
property. E.g. proving and symbolic model checking are more suitable than
explicit-state model checking to check an invariant in an infinite-state system.
Currently, the creation of VTs is done manually due to its complexity. There
are also tools like UML-B [75] which attempt an automatic translation from the
specification to a model. Regarding the future, one could explore whether and
how VTs can be extracted from the requirements automatically, and whether
using a requirement language is useful. Noteworthy is that adding another
requirement language also adds more complexity and another error source.

2.4 Refinement

Refinement is an essential technique to enrich models while ensuring their cor-
rectness. As shown in Figure 1, the refinement chain has a crucial role in the
context of validation obligations, too. First, there is the classical refinement
chain making up the middle of the figure. Here, the model is consecutively en-
riched with behavior and details. But there are also instantiation refinements
and alternate view refinements going to the left and the right.

Instantiation Refinements are those that make a model particular for a
use case, e.g., by providing an initialization for the variables.

Alternate View Refinements are those that allow a more abstract view
onto the model, enabling easier reasoning, e.g., by ignoring behavior that is not
relevant to validate a property, showing this property can become easier.
Multiple problems arise from that:

1. How should such refinements interact with each other? On the right-hand
side of Figure 1, one can see that A2 b is refined by M2 b, which is also
an instance of M2. It is an ongoing question of how the relationship
between these components should be allowed and formally defined in the
first place. The problem of these multi-layer relationships is keeping track
of the changes and dependencies. Furthermore, every abstraction has to be
validated, and in the case of the multi-layer relationship, the abstraction
A2 has to be verified as the refinement of the instance of A2 b. Even with
the minimal example, this would result in a set of new proof obligations
that would have to be shown to ensure a correct refinement in the first
place.

2. How should VOs be refined? When doing linear refinement, a VO that
holds on M1 has to hold on M2. But what about nonlinear refinement?
A VO on A2 b has to hold too when going down the refinement chain,
but how is this shown? Imagine introducing M3 refining M2. Does one
needs to create an A3 b to show the VO?. There could be a case where

6



this abstraction is no longer feasible as new behavior entangles components
that were only loosely connected before. An idea would be to reduce every
VO from a nonlinear refinement back to the origin in the linear refinement
chain, which will be researched and discussed in the future.

3. On the right-hand side of Figure 1 one can see a VO transformation. We
do not know yet what this means in practice. And what the applications
and restrictions are.

Allowing a combination of all abstraction/specializations/refinements shown
in Figure 1 gives maximum freedom to the modeler for the price of simplicity.
Creating a lot of instances and abstractions is easy but translating and tracking
the VOs for each part of the model might get hard, possible losing sight of the
original goal.

2.5 Refactoring

Besides formal refinement models can be refactored e.g. changing the name of
variables, or altering the state space by changing the behavior of operations. In
this case, VOs are invalidated similar to POs. There might be tool support to
adapt the VOs and especially their tasks to this in the future. For now, this is
not an immediate concern as refactoring should not change the behavior of a
model but the quality of life of the modeler.

3 Overlap between Validation and Verification

While researching, we encountered the phenomenon that validation and verifi-
cation are sometimes used as weak synonyms for each other. So, the purpose
of this section is to discuss both terminologies and the area where they over-
lap. For VOs it is particularly important that they cover techniques that are
classified as validation.

By definition, validation checks whether a model meets the stakeholder’s re-
quirements. So, the main question is: “Are we building the right software?”. In
contrast, verification checks whether a model meets its specification. So, here
we ask the question: “Are we building the software correctly?”
Software is usually validated by by checking the behavior for specific inputs,
e.g. when applying unit testing.
The techniques for VOs will be discussed in Section 5. Validation techniques
which are clearly classified as validation are, e.g., animation, trace replay, test-
ing, test case generation, and simulation. These techniques can be clearly stated
as validation techniques.
Validation does not only mean that certain behavior is validated by a scenario.
Referring to the definition, it means that it also checks whether the stake-
holder’s requirements are satisfied. Thus, those requirements cannot be covered
by scenarios only. Instead, there are also requirements where it is necessary to
determine the system’s behavior in each possible state. For this purpose, model
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checking techniques, proving, and (trace) refinement checking are also taken as
validation techniques into account.
As an example, let us consider a requirement describing a safety property such
as ”The lift can always only move when the door is closed.” One might argue
that checking these kinds of requirements belongs to verification rather than
validation. However, the main goal here is also to check that the stakeholder’s
requirements are fulfilled. Note that we do not disagree with model checking,
proving, and (trace) refinement checking being a verification technique. Instead,
we believe that they are both validation and verification.

We have also encountered techniques that we clearly see as verification (and
not as validation):

• Well-definedness Checking

• Checking for integer overflows

• Checking absence of infinite loops

However, these techniques could still be important to ensure the model’s and
VOs’ consistency.

4 Classification of Requirements

By definition according to the IEEE standard 729 [42], a requirement is defined
as follows:

1. A condition or capability needed by a user to solve a problem or achieve
an objective.

2. A condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other
formally imposed document.

3. A documented representation of a condition or capability as in 1 or 2.

This section describes how requirements are classified. In general, they are
separated into functional requirements, non-functional requirements, and do-
main requirements. Furthermore, requirements could also be distinguished be-
tween user requirements, and system requirements. [77]

4.1 Functional, Non-Functional, and Domain Requirements

Functional requirements describe how the system should behave. Regarding the
general definition of a requirement, functional requirements match the definition
of the first aspect. [77]

Thus, functional requirements include descriptions of e.g. safety proper-
ties, liveness properties, operational behaviors, scenarios, probabilistic behav-
iors, timing behaviors.
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In contrast, non-functional requirements describe measurements or constraints
for the quality of the software system such as performance, reliability, maintain-
ability, testability, scalability, or security. Thus, non-functional requirements
define criteria to evaluate those quality constraints or measurements. [77]

Taking a look at the definition of a requirement, non-functional requirements
correspond to the second aspect.

Domain requirements are requirements that have been formulated from a
domain expert’s perspective. Therefore, domain requirements can either be
functional or non-functional. [77]

Concerning the domain-specific aspect, it might be necessary to refine or
abstract the model, projecting on the domain expert’s perspective. Since the
model is projected on a specific perspective, state space projection and trace
refinement might play an important role during the validation.

4.2 User Requirements and System Requirements

Requirements could also be distinguished between user and system require-
ments. User requirements are written from a stakeholder’s perspective, describ-
ing the expectation of how a system should behave. Therefore, user require-
ments usually describe how the user can interact with the model, and check the
software’s behavior. In contrast, system requirements describe how software
components interact with each other. Thus, system requirements are rather
architectural or structural. [77]

5 Validation Techniques and Validation Obliga-
tions

This section takes possible validation techniques into account which can be
used in a validation task to validate requirements. We will also discuss their
strengths and weaknesses, and the tools supporting them. Furthermore, we will
define validation obligations for each validation technique. As already explained
in Section 2.2, the formulation of a VT is up to the modeler.

5.1 Validation by Animation, Trace Replay, Testing

Animation provides the opportunity for a human to interact with the model.
Some animators explore all transitions from the current state to the succeed-
ing states. This is done by interpreting the operational semantics of the used
formalism on the model with all possible values for parameters and variables
that are assigned non-deterministically. Regarding the notion for a transition,
possible means that the corresponding guard is met. [44]

The main advantage of animation is that the user can interact with the model
and view the model’s state after executing an action. Thus, this validation
technique makes it possible to reason about the model more easily. When an
animator explores all succeeding transitions, the user also gets the information
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on which actions can be applied outgoing from the current state. This eases the
interaction with the model in a way that the user does not need to think about
which input parameters are required to constraint the guard. Nonetheless, it
is then necessary to iterate over the possible values for parameters and non-
deterministically assigned variables which leads to a combinatorial explosion of
possible transitions. [44]

Outgoing from an animation process, the modeler could store the resulting
trace representing a scenario with certain behaviors. Later on, the trace can
be used to re-play the scenario, i.e., to check whether the scenario is still re-
playable from the model. Trace replay is applied similar to animation, but with
the main difference that it is done automatically.

Let T = [t1, . . . , tn] be a trace consisting of a list with the transitions
t1, . . . , tn. For each transition, the modeler could optionally add a predicate
ψ to be checked after re-playing the transition. Furthermore, we will use the
notation t <ψ> for a transition t and a predicate ψ. In the case that there
is no postcondition to be checked after re-playing a transition, we will use the
notation t only.

Traces can then also be viewed as acceptance and unit tests which are well-
known in traditional programming practice. Thus, they can then be used to
ensure the presence of certain behaviors in the model. The trace replay VO is
then defined as follows:

Trace Replay VO
Name: TR
Task: Trace Replay (or Animation manually)
Context: Model
Parameters: T

Information
Action: Succeeds if all transitions t1, . . . , tn can be re-played and all correspnding
postconditions are checked successfully, fails otherwise

Automatable: Yes

Note that the form of a transition depends on the used formalism. E.g.,
in the B method, a transition consists of the operation’s name, the values for
parameters, and the values for non-deterministic assigned variables.

5.2 Validation by Trace Refinement

As described earlier, animation and trace replay helps to determine whether a
behavior is present in a model. When refining a model, additional behaviors are
encoded. Now, we want to check whether the trace of the abstract model still
conforms with the concrete one. This is done by trace refinement.
Trace refinement adapts an abstract trace for the refinement. It is common for
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modeling languages to even use traces as evidence of a correct refinement of the
model. In CSP, a refinement check is a trace refinement check over all accessible
traces. Such a tool performing refinement checking is FDR [37].
In languages like ASM, runs (trace-like structures) and their relationship be-
tween each other define the refinement’s behavior. Trace refinement is possible
under the assumption that a trace can be created and that some sort of formal-
ized refinement rules exists. One can apply the refinement rules onto the trace
and create a trace working on the refinement this way.
A core problem is to determine if two traces are equivalent. There are two points
of view here:

1. A trace represents a high-level behavior or scenario. If the scenario is
still possible the trace should be transformed in a way to represent the
scenario.

2. A trace is a low-level sequence of states and transitions. Those are trans-
formed with the help of the refinement rules (e.g. hiding transitions in
CSP). If the resulting trace can be executed, the behavior represented by
the trace is preserved.

While the latter can be properly formalized, the former one cannot. Thus, the
checking trace refinement is applied to the low-level representation of a trace.

Let Ma and Mc be two machines with Mc refining Ma, and let T be a valid
trace in Ma. Executing the corresponding VO checks whether the behavior of
T is preserved in Mc. It is defined as follows:

Trace Refinement VO
Name: TRF
Task: Trace Refinement
Context: Abstract Model (Ma), Concrete Model (Mc)
Parameters: T

Information
Action: Succeeds if shown that T can be adapted to Mc successfully according to
the refinement rules
Automatable: Yes
Special Ability: Provides an adapted/concrete trace

5.3 Validation by Test Case Generation

Test case generation tries to satisfy a given coverage criterion by generating
tests for a model. The desired coverage criterion is satisfied if each possible
branch is covered by a test. Thus, each generated test is represented by a trace
which can be seen as a scenario representing a certain property. Therefore,
test case generation is a validation technique that can be used to generate new
scenarios which again can be validated by animation, trace replay, and testing.
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Coverage criteria include operation coverage and MC/DC coverage. As already
suggested by the name, the goal of operation coverage is to cover each operation.
In contrast, MC/DC coverage is used to cover all possible outcomes of each
operation. [73, 93]

Let O = {o1, . . . , on} be the set of operations that should be covered, and let
δ be the desired search depth. Then, the operation coverage test case generation
VO is defined as follows:

Operation Coverage Test Case Generation VO
Name: OC
Task: Test Case Generation for Operation Coverage
Context: Model
Parameters: O, δ

Information
Action: Succeeds if all operations can be covered to the given search depth, fails
otherwise

Automatable: Yes
Special Ability: Generates a trace for each covered operations

Again, let l be the desired MC/DC level, and let δ be the desired search
depth. Then, the MC/DC coverage test case generation VO is defined as follows:

MC/DC Test Case Generation VO
Name: MCDC
Task: Test Case Generation for MC/DC Coverage
Context: Model
Parameters: l, δ

Information
Action: Succeeds if MC/DC criterion to the given search depth can be fulfilled,
fails otherwise

Automatable: Yes
Special Ability: Generates traces for MC/DC criterion

5.4 Validation by Simulation

There are different kinds of simulation techniques that can be used for validation.
Assuming that a model is too abstract for execution, one technique is to

enable the user to define constraints and concrete instantiations for the non-
executable constructs which should match future refinements. This makes it
possible to validate these models anyway. So, the model can still be executed
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and validated automatically without creating a whole refinement model. The
disadvantage of this technique is that the configuration is up to the user. On the
one hand, the resulting state space should focus on the relevant parts concern-
ing further refinements and implementations. On the other hand, the defined
constraints and instantiations must be consistent with the model. [95, 44]

Another simulation technique is called Co-Simulation. Sometimes, systems
consist of several different components or subsystems that interact with each
other. Each subsystem might be embedded into a different tool, or even modeled
with a different formalism. Co-simulation implements the idea of combining the
components into an overall system for simulation. In particular, the subsystems
and their communication with each other are simulated in parallel. Regarding
the communication itself, it is necessary that the subsystems exchange data with
each other which again might trigger events. [86]

Again, there also exists a simulation technique which is called timed proba-
bilistic simulation. Here, the modeler can simulate the underlying model with
timing and probabilistic behavior. Each simulation results in a trace where each
executed event is annotated with a certain time, called timed trace. A timed
trace can then be replayed in real-time, i.e., wall-clock time. Monte Carlo simu-
lation [64] can also be applied in the context of timed probabilistic simulation to
generate a various number of simulations. Based on the generated simulations,
the modeler could also apply statistical validation techniques such as hypothesis
testing [46] and estimation [29] to validate timing and probabilistic behavior.
To get more information about the simulations, the modeler could also take
simulation statistics into account, e.g. the percentage of how often an event
was executed in the simulations when it was enabled. By considering other val-
idation techniques such as state space visualization, and state space statistics,
it is also possible to gain information about the part of the state space that is
covered by the simulations. [90]

As result, we define VOs for hypothesis testing, estimation of probability,
simulation, and simulation statistics.

Let N be the number of simulations, let H be the hypothesis formalized as
a property to be checked, and α be the significance level. Then the VO for
hypothesis testing is defined as follows:

Hypothesis Testing VO
Name: HT
Parameters: N, H, α
Context: Model, Simulation
Task: Hypothesis Testing

Information
Action: Succeeds if hypothesis accepted within the significance level α
Automatable: Yes
Special Ability: Generates simulations, each of them representing a scenario
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Let N be the number of simulations, let P be the property (containing the
desired probability) to be checked, and δ be a value defining the range of the
desired probability. The VO for estimating the probability is then defined as
follows:

Estimation of Probability VO
Name: EPR
Parameters: N, P, δ
Context: Model, Simulation
Task: Estimation of Probability

Information
Action: Succeeds if the estimated probability for the given property is within a
given range defined by δ

Automatable: Yes
Special Ability: Generates simulations, each of them representing a scenario

Furthermore, it is often also useful to inspect the simulation statistics after
applying multiple simulations. Let Psistat be the set of simulation statistics
properties, and let Rsistat ⊆ Psistat × R≥0 be a well-defined function mapping
each statistic property to its value. Given a number of simulations N , a starting
condition Cstart for each simulation, an ending condition Cend for each simula-
tion, and φ a predicate over Rsistat, the corresponding VO is defined as follows:

Simulation Statistics VO
Name: SISTAT
Task: Simulation Statistics
Context: Model, Simulation
Parameters: N , Cstart, Cend, φ

Information
Action: Generates simulation statistics (can be transformed to Rsistat) based on
N simulations which has to be inspected by the modeler. The VO succeeds if φ
is true.

Automatable: No
Special Ability: Generates simulations, each of them representing a scenario

5.5 Validation by Model Checking

Explicit-state Model Checking Explicit-state model checking checks state-
based behaviors of a system by exploring its state space exhaustively. Ex-
haustive exploration leads to full coverage of the system’s behavior when the
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model checking process terminates. Furthermore, it is then ensured whether
the checked properties are true or false. In the case that a property is violated,
explicit-state model checking can return a counter-example. Nevertheless, this
validation technique often struggles with the combinatorial explosion of the
state space which is called the state space explosion problem. This is because
the number of states in a state space grows exponentially wrt. the number of
variables in a model. [7]

Let F be the set of logical formulas,and let c be a model checking con-
figuration with c ∈ ConfMC ,F , where as ConfMC ,F denotes the set of model
checking configurations accepting formulas in F . Currently, we have defined
the set ConfMC ,F as:

ConfMC ,F = {<FIN>, <DLF>} ∪ {<INV, ψ >| ψ ∈ F} ∪
{<GOAL, ψ >| ψ ∈ F}

Regarding the future, the ConfMC ,F could be extended by new configura-
tions. <FIN> denotes the configuration applying explicit-state model checking
without checking any properties. So, after the check finishes, the modeler only
knows that the state space is finite. Thus, the aim is to check whether explicit-
state model checking terminates and therefore the state space is finite. <INV,
ψ > represents the configuration for invariant checking with a formula ψ. Again,
<DLF> is the configuration for deadlock checking. Furthermore, <GOAL, ψ >
stands for a configuration to find a goal/a state satisfying the formula ψ.

The corresponding explicit-state model checking VO is then defined as fol-
lows:

Explicit-State Model Checking VO
Name: MC
Task: Explicit-State Model Checking
Context: Model
Parameters: c

Information
Action: Succeeds if configuration satisfied on state space, fails otherwise
Automatable: Yes
Special Ability: Provides (counter-)example

Temporal Model Checking Temporal model checking includes LTL and
CTL model checking. LTL model checking checks a temporal property (ex-
pressed as LTL formula) that is expected for the given system. Using the tran-
sition system and the Büchi automaton that is created from the LTL formula,
LTL model checking can check temporal properties which are more complex
than state-based properties. When negating the LTL formula, one is also able
to find an example where the temporal property is true. [7]
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Let ψ be an LTL formula, and let c ∈{SUCCESS, FAIL}. The VO for LTL
model checking is defined as follows:

LTL Model Checking VO
Name: LTL
Task: LTL Model Checking
Context: Model
Parameters: ψ, c

Information
Action: Succeeds if LTL formula either satisfied on state space for c = SUCCESS,
or failed for c = FAIL
Automatable: Yes
Special Ability: Provides (counter-)example

To formulate more expressive temporal properties, the modeler could also
write CTL formulas and apply CTL model checking. Compared to LTL, CTL
supports the operators Aφ (φ is true for all paths), and Eφ (it exists at least
one path where φ is true). [7]

Let ψ be a CTL formula, and let c ∈{SUCCESS, FAIL}. The VO for CTL
model checking is defined as follows:

CTL Model Checking VO
Name: CTL
Task: CTL Model Checking
Context: Model
Parameters: ψ, c

Information
Action: Succeeds if CTL formula either satisfied on state space for c = SUCCESS,
or failed for c =FAIL
Automatable: Yes
Special Ability: Provides (counter-)example

As the state space is also explored exhaustively, there are the same advan-
tages and disadvantages as explicit-state model checking. [7]

Symbolic Model Checking Symbolic model checking bases on the idea of
getting rid of the state-space explosion problem. To achieve this, the state space
is not explored explicitly. Instead, logical formulae are derived from the model
and then checked for solutions where properties are violated. Symbolic model
checking makes use of techniques such as SMT solving and abstract interpreta-
tion which are realized in the algorithms for constraint-based model checking,
bounded model checking, k-Induction and IC3 etc. As the symbolic evaluation
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of the model is an over-approximation, there might be some false positives. Fur-
thermore, the counter-example might also be abstracted which leads to a loss
of information. [49]

Let F be a set of logical formulas, and let c be a model checking configura-
tion with c ∈ ConfMC ,F \ {<FIN>}, whereas ConfMC ,F is defined as described
before. The corresponding symbolic model checking VO is then defined as fol-
lows:

Symbolic Model Checking VO
Name: SMC
Task: Symbolic Model Checking
Context: Model
Parameters: c

Information
Action: Succeeds if configuration satisfied on state space, fails otherwise
Automatable: Yes
Special Ability: Provides (abstracted) (counter-)example

Probabilistic and Statistical Model Checking By assigning probabilities
to events in a model, a state space could be generated on which transitions
are labeled with probabilities. As result, the state space can be viewed as a
Markov chain on which probabilistic model checking can be applied to validate
probabilistic properties. It is also possible to validate probabilistic temporal
properties, e.g., properties that are encoded with PLTL, PCTL, or PB-LTL
formulas. Here, probabilistic temporal model checking is taken into account.
Similar to probabilistic model checking, statistical model checking also aims
to check probabilistic properties. The main difference is that statistical model
checking applies Monte Carlo simulation, whereupon PB-LTL or BLTL formulas
are checked with hypothesis testing or estimation. [52, 53]

Let ψ be a probabilistic temporal formula, and let c ∈{SUCCESS, FAIL}.
The VO for probabilistic/statistical model checking is defined as follows:
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Probabilistic/Statistical Model Checking VO
Name: PSMC
Task: Probabilistic/Statistical Model Checking
Context: Model
Parameters: ψ, c

Information
Action: Succeeds if probabilistic temporal formula either satisfied on state space
or simulations for c = SUCCESS, or failed for c = FAIL
Automatable: Yes
Special Ability: Provides statistics, and (counter-)examples

As mentioned before, timed probabilistic simulation also applies Monte Carlo
simulation together with statistical validation techniques. However, timed prob-
abilistic simulation does not check temporal formulas. Instead, the modeler can
specify a property (with timing behavior if desired) along with a start and end
condition which should be checked. [90]

5.6 Validation by Proving

Proving is a technique which is used to ensure the model’s consistency, i.e., to
show the correctness of the program in certain aspects. To achieve this, proving
is often applied to proof obligations which are formulas that are generated from
the model. Relevant aspects could be e.g., the violation of invariants, deadlocks,
well-definedness errors, or refinement errors. The process of proving itself is both
automatic and interactive [2].

In practice, different solvers are applied to try to prove a formula. However,
solvers are sometimes not strong enough to prove a formula. The proof must
then be done by the user interactively with additional effort.

Let ψ be a logical formula, then the VO for proving is defined as follows:

Proving VO
Name: PO
Task: Proving
Context: Model
Parameters: ψ

Information
Action: Succeeds if formula satisfied on the model, fails otherwise
Automatable: Partial

The main purpose of proving is to ensure that the model does not contain
any errors which seems to be rather verification than validation. As discussed
in Section 3, we also see proving as validation.
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5.7 Validation by Visualization, Statistics, and Metrics

State Space Visualization As already mentioned before, animation is par-
ticularly important for validation as the user might want to interact with the
model to view the resulting state afterwards. Sometimes, the modeler even
wants to see possible states and transitions between them to understand and
validate the model. This can be done by visualizing and inspecting the whole
state space. Let Zsvis be the set of reachable states, and Tsvis be the set of possi-
ble transitions between them, i.e., (z1, t, z2) ∈ Tsvis ⇔ there exists a transition
from z1 to z2 which is labeled with t. The state space is then defined as a
2-tuple Ssvis = (Zsvis, Tsvis). Given φ a predicate over S, the corresponding
VO is then defined as:

State Space Visualization VO
Name: SVIS
Task: State Space Visualization
Context: Model
Parameters: φ

Information
Action: Generates state space visualization representing the state space Ssvis
which has to be inspected by the modeler manually. The VO succeeds if φ is true

Automatable: No

In practice, state spaces often become very large due to the state space
explosion problem. As result, the visualization gets too complex to understand.
To solve this problem, the modeler could provide an expression to create a
state space projection onto this expression. Projecting the state space on a
formula results in an abstract visualization of the state space which is easier to
understand. [51]

Let ψ be an expression formula to project the state space on an abstracted
state space Sψ = (Zψ, Tψ). Zψ and Tψ then represent the abstracted set of
reachable states and the abstracted set of possible transitions wrt. to ψ re-
spectively. Given φ a predicate over Sψ, the state space projection VO is then
defined as:
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State Space Projection VO
Name: SPRJ
Task: State Space Projection
Context: Model
Parameters: ψ, φ

Information
Action: Generates state space projection Sψ on value of ψ which has to be
inspected by the modeler manually. The VO succeeds if φ is true.

Automatable: No

Based on the abstracted state space, one could apply other VOs, e.g. LTL
model checking.

Enabling Diagram An enabling diagram is a diagram describing for each
operation which operations are enabled when executing this operation [27]. Let
E be the set of events, and let Red ⊆ E×E be a relation with (e1, e2) ∈ Red ⇔
e1 enables e2. Given φ a predicate over Red, the corresponding VO is defined
as follows:

Enabling Diagram VO
Name: ED
Task: Enabling Diagram
Context: Model
Parameters: φ

Information
Action: Generates an enabling diagram of the model (can be transformed to
relation Red) which has to be inspected by the user. The VO succeeds if φ is
true.

Automatable: No

Vacuous Guards/Invariants Analysing vacuous invariants and guards is
applied to the corresponding predicate, checking whether there is a redundant
conjunct.

Let c ∈{GRD, INV}, then the corresponding VO is defined as follows:
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Vacuous Parts VO
Name: VAP
Task: Vacuous Parts
Context: Model
Parameters: c

Information
Action: Calculates whether there are vacuous parts in invariants or guards
Automatable: Yes
Special Ability: Provides sub-predicate containing the vacuous parts, can thus be
used to improve the predicate

Operation Metrics/Table

• Operation Coverage Table: This table describes for each operation whether
it is covered yet. There is also a version of this metric that is limited
to feasible operations. Let E be the set of operations, and let Roct ⊆
E × {COV ERED,UNCOV ERED} be a well-defined function with
(e, UNCOV ERED) ∈ Roct ⇔ e not covered yet and (e, COV ERED) ∈
Roct ⇔ e already covered. Given φ a predicate over Roct, the correspond-
ing VO is defined as follows:

Operation Coverage Table VO
Name: OCT
Task: Operation Coverage Table
Context: Model
Parameters: φ

Information
Action: Generates a table describing for each operation whether it has
been covered yet (can be transformed to relation Roct) which has to be
inspected by the user. The VO succeeds if φ is true.

Automatable: No

• Read/Write Matrix : There are two types of read/write matrices: one for
operations and one for variables. The read/write matrix for operations
stores which variables an operation reads and writes. In contrast, the
read/write matrix for variables stores for each variable by which operation
it is read and written.

Let E be the set of events, let V be the set of variables, and let Rrwm ⊆
{READ,WRITE}×(E×V ) be a relation with (READ, (e, v)) ∈ Rrwm ⇔
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e reads v and (WRITE, (e, v)) ∈ Rrwm ⇔ e writes v. Given φ a predi-
cate over Rrwm, the corresponding VO is defined as follows:

Read/Write Matrix VO
Name: RWM
Task: Read/Write Matrix
Context: Model
Parameters: φ

Information
Action: Generates a read/write matrix storing read/write relation between
operations and variables (can be transformed to relation Rrwm) which has
to be inspected by the user. The VO succeeds if φ is true.

Automatable: No

Variable Metrics/Table

• Variable Coverage: This metric provides the number of values a vari-
able can actually be assigned to. Let V be the set of variables, and let
Rvct ⊆ V × N0 be a well-defined function mapping each variable to the
number of values it can be assigned to. Given φ a predicate over Rvct, the
corresponding VO is defined as follows:

Variable Coverage VO
Name: VCT
Task: Variable Coverage Table
Context: Model
Parameters: φ

Information
Action: Generates a table containing the variable coverage metrics for each
variable (can be transformed to relation Rvct) which has to be inspected
by the user. The VO succeeds if φ is true.

Automatable: No

• Min/Max Values for Variables: This metric provides the minimum and
maximum value each variable can actually be assigned to.

Let V be the set of variables, and for each v ∈ V let τ(v) be the set
of all values that can have the type of v. Furthermore, let Rmmv ⊆
V × (

⋃
t∈V τ(t) ×

⋃
t∈V τ(t)) be a function mapping each variable to its

minimum and maximum value. For each variable v′ where the minimum
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and maximum value is not defined due to its type, Rmmv is defined such
that v′ /∈ dom(Rmmv). For each tuple (m,n) ∈ ran(Rmmv), we define
min(m,n) = m and max(m,n) = n. Given φ a predicate over Rmmv, the
corresponding VO is defined as follows:

Min/Max Values VO
Name: MMV
Task: Min/Max Values Table
Context: Model
Parameters: φ

Information
Action: Generates a table containing the minimum and maximum value
for each variable (can be transformed to Rmmv) which has to be inspected
by the user. The VO succeeds if φ is true.

Automatable: No

State Space Statistics To validate a model, the modeler could also take
state space statistics into account. Interesting statistics for the state space,
could be, e.g., the number of states, or the number of transitions. One could
also extract more complex statistics, e.g., the number of states with a certain
property such as invariant violation, deadlock, or liveness. In order to determine
which events are particularly important for the model, one could also take the
number of transitions for each event into account.

Let Pspstat be the set of state space statistics properties, and let Rspstat ⊆
Pspstat × R≥0 be a well-defined function mapping each statistic property to its
value. Given φ a predicate over Rspstat the corresponding VO is defined as
follows:

State Space Statistics VO
Name: STAT
Task: State Space Statistics
Context: Model
Parameters: φ

Information
Action: Generates state space statistics containing number of states, number of
transitions etc. (can be transformed to Rspstat) which has to be inspected by the
user. The VO succeeds if φ is true.

Automatable: No
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5.8 Code Generation for Validation

In contrast to the aforementioned tasks, we do not see code generation as a
validation task directly. Instead, it is rather a task that can be applied to
enable other validation tasks afterwards.

During the software development process using formal methods, software is
specified and refined step by step. Once a refinement level is reached which
is close to implementation constructs, a code generator is applied. Regarding
the B method, a code generator for embedded systems can be applied once the
B0 language is reached, which is the implementable subset of B [22]. As an
implementable subset of the specification language is required, memory usage
of the final refinement can be verified. Thus, the generated code can be used
for embedded systems. Additionally, the software engineer could also write
or generate tests to validate the generated code. This also means that these
validations are applied at the very end of the software development process.

Communication with the stakeholder and early-stage validation is partic-
ularly important in the context of VOs. To achieve this goal, our approach
intends to take high-level code generators such as B2Program [91] into ac-
count. This code generator is suitable for application for early-stage validation
of the software, but cannot be used to generate code for embedded systems.
Based on the generated code, the model could then be animated, tested, and
simulated where other As the model is translated to a programming language,
it could also be more familiar to the domain expert to work with it compared
to working in the context of formal methods.

5.9 Languages and their tools

For our research we have investigates nine major modeling languages regarding
their tool support for different task. The results are shown in Table 1. Whenever
something is marked with 7, we did not find referable evidence for the existence
of the respective tool support.
One can see that tool support is widely spread. As we use the ProB platform
as starting point for further development, the B and event-B languages are
especially appealing as they are covered by most of the features we investigated.

6 Demonstration of Validation Obligations

In this section, we will demonstrate based on an example how VOs can be used
to validate requirements. Let us consider a small traffic light example, modeling
the cars’ traffic light and the pedestrians’ traffic light at a crossing in Germany,
with the following requirements:

1In Alloy, it seems that it is not possible to animate the model interactively. Nonetheless, it
is still possible to test the feasibility and behavior of a scenario. Here, it seems that scenarios
have to be encoded manually. Furthermore, note that Alloy only supports infinite traces

2High-Level Code Generation for (Early-Stage) Validation
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Table 1: Specification Languages and Supported Validation Techniques
Tools Alloy ASM B Event-B VDM TLA+ Z CSP Circus
Animation 7 3([12]) 3([54, 92]) 3([11, 54, 92]) 3([66]) 3([39]) 3([11, 24, 70]) 3([11, 18]) 7
Trace Replay/Testing 3([84, 23]) 1 3([19]) 3([10]) 3([76, 10]) 7 3([39, 10]) 3([26]) 3([20]) 7

Test Case Generation 3([79]) 3([33, 34, 35]) 3([85]) 3([73, 93, 85]) 3([28]) 3([39, 85]) 3([41, 85]) 3([65]) 7

Simulation 3([16]) 3([36]) 3([90]) 3([90]) 3([86, 30]) 3([90]) 3([90]) 3([90]) ?

Explicit-State MC 3([17, 23]) 3([5]) 3([54]) 3([11, 54]) 3([58]) 3([96, 39]) 3([70, 11]) 3([37, 11]) 7
LTL MC 3([17, 23]) 3([5]) 3([69]) 3([69]) 3([58]) 3([39, 69]) 3([69, 25]) 3([69, 55]) 7
CTL MC 3([87]) 3([5]) 3([54]) 3([11, 54]) 3([58]) 3([11, 54, 39]) 3([25]) 3([54]) 7
Symbolic MC 3([17, 23]) 3([5]) 3([49]) 3([49]) 7 3([48, 47, 49]) 3([74]) 3([80]) 7
Probabilistic/Statistical MC 7 7 7 3([4, 83]) 7 7 7 7 7

Proving 3([67]) 3([8]) 3([63]) 3([1, 2]) 3([3]) 3([21]) 3([15, 31]) 3([82, 43]) 3([32])

Refinement Checking 7 3([6, 14]) 3([63]) 3([1, 2]) 3([59]) 3([81]) 3([78]) 3([37]) 3([32])

State Space Visualization ? ? 3([51]) 3([51]) 7 3([50, 51]) 3([51]) 3([54, 11, 18]) 7

Code Generation 2 7 3([13]) 3([91]) 3([71]) 3([40]) 7 7 3 3([9])

First, we will describe the functional requirements from which the model
will be created.

FUN1: There are two traffic lights: the cars’ traffic light and the pedestrians’
traffic light. Initially, both traffic lights are red.

FUN2: Cars’ traffic light can switch to red and yellow, if it is red and the
pedestrians’ traffic light is red.

FUN3: Cars’ traffic light can switch to green, if it is red and yellow and the
pedestrians’ traffic light is red.

FUN4: Cars’ traffic light can switch to yellow, if it is green and the pedes-
trians’ traffic light is red.

FUN5: Cars’ traffic light can switch to red, if it is yellow and the pedestrians’
traffic light is red.

FUN6: Pedestrians’ traffic light can switch to green, if it is red and the cars’
traffic light is red.

FUN7: Pedestrians’ traffic light can switch to red, if it is green and the cars’
traffic light is red.
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SAF1: One of the traffic lights is at least always red.

SAF2: Cars’ traffic light can either be red, red and yellow, yellow, or green.

SAF3: Pedestrians’ traffic light can either be red, or green.

LIV1: The situation that both traffic lights are red occurs infinitely often.

SCENARIO1: Running Cycle for Cars’ Traffic Light:
In the beginning, the cars’ and the pedestrians’ traffic light are both red.
The cars’ traffic light then switches from red to red and yellow.
Afterwards, it switches from red and yellow to green.
Now, it switches back to yellow, and then to red.
The pedestrians’ traffic light stays red during the scenario.

Furthermore, this report also considers additional functional requirements
FUN8, FUN9, and FUN10 in a refinement. These requirements will not be
validated in this report.

FUN8: A controller sending a command to switch a traffic light to a specific
color, if there are no other commands queued.

FUN9: A traffic light can only switch its color if there is a corresponding
command queued.

FUN10: A command can be rejected after it has been sent by the controller.

Regarding SCENARIO1, a trace refinement criterion is expected to hold
as shown in TRC1.

TRC1: SCENARIO1 should be feasible from a perspective described in
FUN8 - FUN10.
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SCENARIO2: Running Cycle for Pedestrians’ Traffic Light:
In the beginning, the cars’ and the pedestrians’ traffic light are both red.
The pedestrians’ traffic light switches from red to green.
Afterwards, it switches back from green to red.
The cars’ traffic light stays red during the scenario.

Encoding those functional requirements leads to the B model described in
Listing 1.

MACHINE TrafficLight
SETS colors = {red , redyellow , yellow , green}
VARIABLES tl_cars , tl_peds

INVARIANT tl_cars : colors & tl_peds : {red , green} &
(tl_peds = red or tl_cars = red)

INITIALISATION tl_cars := red || tl_peds := red

OPERATIONS
cars_ry = SELECT tl_cars = red & tl_peds = red THEN tl_cars := redyellow END;
cars_y = SELECT tl_cars = green THEN tl_cars := yellow END;
cars_g = SELECT tl_cars = redyellow THEN tl_cars := green END;
cars_r = SELECT tl_cars = yellow THEN tl_cars := red END;
peds_r = SELECT tl_peds = green THEN tl_peds := red END;
peds_g = SELECT tl_peds = red & tl_cars = red THEN tl_peds := green END

END

Listing 1: Traffic Light Example

To demonstrate trace refinement, the machine shown in Listing 1 will also
be refined. Regarding Classical B, it is not only necessary to add new events
in the refinement, but also to add them in the abstract machine refining skip.
The resulting machines are shown in Listing 4 and Listing 5.

After encoding commands to switch the traffic lights’ colors (FUN8 - FUN10),
a domain expert might be interested in sending commands without considering
the traffic light’s color only. Here, the domain expert could define a diagram
describing how the logic for sending commands has to work. This is shown in
PRC1 in Figure 3.

Based on the model, the designer could also run different simulations. List-
ing 2 shows a SimB file [90] that annotates operations with times and proba-
bilities. Within the first simulation shown in Listing 2, the controller chooses
between the cars’ traffic light’s cycle and the pedestrians’ traffic light’s cycle
with a probability of 50% for each. Whenever a traffic light turns green or red,
it will not switch the color for 5 seconds. Switching the cars’ traffic light from
red and yellow to green, and yellow to red always takes 500 ms.
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Figure 3: PRC1 as Diagram

{
"activations ": [
{"id":" $initialise_machine", "execute ":" $initialise_machine",
"activating ":" choose"},

{"id":" choose", "chooseActivation ":{" cars_ry ": "0.5" , "peds_g ": "0.5"}} ,
{"id":" cars_ry", "execute ":" cars_ry", "after ":5000 , "activating ":" cars_g"},
{"id":" cars_g", "execute ":" cars_g", "after ":500 , "activating ":" cars_y"},
{"id":" cars_y", "execute ":" cars_y", "after ":5000 , "activating ":" cars_r"},
{"id":" cars_r", "execute ":" cars_r", "after ":500 , "activating ":" choose"},
{"id":" peds_g", "execute ":" peds_g", "after ":5000 , "activating ":" peds_r"},
{"id":" peds_r", "execute ":" peds_r", "after ":5000 , "activating ":" choose "}

]
}

Listing 2: Traffic Light Simulation (TrafficLight Sim)

Based on this simulation, the modeler could then validate the probabilistic
timing requirements PROB-TIM1 and PROB-TIM2.

PROB-TIM1: Whenever both traffic lights are red, the cars’ traffic light
will turn green with a probability of at least 80% within the next 30 seconds.

PROB-TIM2: Whenever both traffic lights are red, the pedestrians’ traffic
light will turn green with a probability of at least 90% within the next 30 seconds.
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Based on the encoded model, the non-functional requirements are as follows:
After validating SCENARIO1 and SCENARIO2, the following coverage

criteria are expected to hold: COV1, COV2, and COV3.

COV1: Validating SCENARIO1 and SCENARIO2 covers the model such
that the cars’ traffic light switches between four colors, while the pedestrians’
traffic light switches between two colors.

COV2: Validating SCENARIO1 and SCENARIO2 covers the model such
that all events are at least explored once.

COV3: Validating SCENARIO1 and SCENARIO2 covers the model such
that the whole state space consisting of six possible states (including root) and
seven possible transitions are covered.

STRUC1: tl cars is written by cars ry, cars y, cars g, cars g only.

STRUC2: tl peds is written by peds r and peds g only.

STRUC3: There are no vacuous parts in the invariant and guards of the
model.

STRUC4: The enabling relation of events is as follows: cars ry enables
cars g, cars g enables cars y, cars y enables cars r, cars r enables cars ry and
peds g, peds g enables peds r, peds r enables peds g and cars ry.

STRUC5: All operations should be coverable within 5 steps.

STRUC6: MC/DC coverage with level 2 and depth 5 should be feasible for
the model.

Now, we will describe how all these requirements are validated by VOs.
Particularly, we will present at least one VO for each requirement. Since the
requirements described above do not necessarily have to be validated by VOs
from all types, we will also present alternative VOs to demonstrate all VO types.
Here, we will mainly focus on validation in ProB. Furthermore, the VOs are
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formalized using operators in the B method. Regarding probabilistic model
checking, we will also take an example in PRISM into account.

The notion we will use is as follows:

VOid/V Ocontext/V Oname : V Oparameters

In order to validate FUN1, it is necessary to check whether both traffic
lights are red in all initial states. Thus, this requirement could be validated by
an LTL model check expecting a positive result:

LTL1/TrafficLight/LTL: {tl cars = red & tl peds = red}, SUCCESS

For validation of FUN2, one needs to check that whenever the cars’ traffic
light is red and yellow, it has been red and yellow since both traffic lights are
red, one step ago. Thus, this behavior can be validated by an LTL model check
expecting a positive result.

LTL2/TrafficLight/LTL: G ({tl cars=redyellow} =⇒ ({tl cars=redyellow}
S {tl cars=red & tl peds=red})), SUCCESS

For validation of FUN3, one needs to check that whenever the cars’ traffic
light is green, it has been green since the cars’ traffic light is red and yellow,
and the pedestrians’ traffic light is red, one step ago. Thus, this behavior can
be validated by an LTL model check expecting a positive result.

LTL3/TrafficLight/LTL: G ({tl cars=green} =⇒ ({tl cars = green} S
{tl cars=redyellow & tl peds=red})), SUCCESS

For validation of FUN4, one needs to check that whenever the cars’ traf-
fic light is yellow, it has been yellow since the cars’ traffic light is green, and
the pedestrians’ traffic light is red, one step ago. Thus, this behavior can be
validated by an LTL model check expecting a positive result.

LTL4/TrafficLight/LTL: G ({tl cars=yellow} =⇒ ({tl cars=yellow} S
{tl cars=green & tl peds=red})), SUCCESS

For validation of FUN5, one needs to check two behaviors:

• The cars’ traffic light might change its color unequal red.

• Assuming that the cars’ traffic light has already switched its color unequal
to red: Whenever the cars’ traffic light is red, it has been red since the
cars’ traffic light is yellow, and the pedestrians’ traffic light is red, one
step ago.
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Both behaviors can be formulated as an LTL model check. While the first
property is expected to fail, the second property is expected to hold. Regard-
ing the first behavior, it would also be possible to apply explicit-state model
checking searching for a goal.

LTL5.1/TrafficLight/LTL: ¬ (F{tl cars 6= red}), FAIL

LTL5.2/TrafficLight/LTL: ({tl cars = red} W ({tl cars 6= red} &
G({tl cars=red} =⇒ ({tl cars=red} S {tl cars=yellow & tl peds=red})))), SUC-
CESS

For validation of FUN6, one needs to check that whenever the pedestrians’
traffic light is green, it has been green since the cars’ traffic light is red, and
the pedestrians’ traffic light is red, one step ago. Thus, this behavior can be
validated by an LTL model check expecting a positive result.

LTL6/TrafficLight/LTL: G ({tl peds=green} =⇒ ({tl peds=green} S
{tl cars=red & tl peds=red})), SUCCESS

For validation of FUN7, one needs to check two behaviors:

• The pedestrians’ traffic light might change its color unequal red.

• Assuming that the pedestrians’ traffic light has already switched its color
unequal to red: Whenever the pedestrians’ traffic light is red, it has been
red since the cars’ traffic light is red, and the pedestrians’ traffic light is
green, one step ago.

Both behaviors can be formulated as an LTL model check, too. While the
first property is expected to fail, the second property is expected to hold. Re-
garding the first behavior, it would also be possible to apply explicit-state model
checking searching for a goal.

LTL7.1/TrafficLight/LTL: ¬ (F{tl peds 6= red}), FAIL

LTL7.2/TrafficLight/LTL: ({tl peds = red} W ({tl peds 6= red} &
G({tl peds=red} =⇒ ({tl peds=red} S {tl cars=red & tl peds=green})))), SUC-
CESS

The properties for SAF1 - SAF3 can be encoded as invariants. Thus, they
can be validated by an explicit-state model check, an LTL model check, or a
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symbolic model check. Here, we will present the VOs for explicit-state model
checks.

Validation of SAF1:

MC1/TrafficLight/MC: <INV, tl cars = red or tl peds = red>

Validation of SAF2:

MC2/TrafficLight/MC: <INV, tl cars ∈ {red, redyellow, yellow, green}>

Validation of SAF3:

MC3/TrafficLight/MC: <INV, tl peds ∈ {red, green}>

In contrast, LIV1 is a requirement describing a liveness property. Thus,
it can be checked by an LTL model check expecting a positive result which is
formalized as:

LTL8/TrafficLight/LTL: GF({tl cars = red & tl peds = red}), SUCCESS

For the validation of SCENARIO1 and SCENARIO2, one needs (1) to
replay them by executing the corresponding events, and (2) to check the desired
behavior afterwards. To generate those scenarios, the modeler could animate
the model, encode postconditions, and store the trace for replay afterwards.
This is realized in TR1 and TR2 respectively.

TR1/TrafficLight/TR: [INITIALISATION <tl cars = red & tl peds = red>,
cars ry <tl cars = redyellow & tl peds = red>, cars g <tl cars = green & tl peds
= red}, cars y <tl cars = yellow & tl peds = red>, cars r <tl cars = red & tl peds
= red>]

TR2/TrafficLight/TR: [INITIALISATION <tl peds = red & tl cars = red>,
peds g <tl peds = green & tl cars = red>, peds r <tl peds = red & tl cars =
red>]

To validate TRC1, we have developed the evolved abstract, and the concrete
machine for traffic light into account (see Listing 4 and Listing 5). Now, we will
demonstrate trace refinement of TR1. As new events refining skip are added
to the abstract machine, it is necessary to adapt the trace in TR1 to the one
shown in TRF1. The trace should then be refined and replayed on the concrete
machine afterwards.
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TRF1/TrafficLight2, TrafficLightCommand Ref/TRF: [INITIALISATION
<tl cars = red & tl peds = red>, Send cmd(cmd=cmd cars ry), cars ry <tl cars
= redyellow & tl peds = red>, Send cmd(cmd=cmd cars g), cars g <tl cars =
green & tl peds = red}, Send cmd(cmd=cmd cars y), cars y <tl cars = yellow &
tl peds = red>, Send cmd(cmd=cmd cars r), cars r <tl cars = red & tl peds =
red>]

As mentioned before, a domain expert could be interested in the logic for
sending commands only, without taking the traffic lights’ colors into account.
The diagram portrayed in PRC1 (Figure 3) could then be validated by project-
ing the state space on queuedCmd for inspection afterwards. This is formalized
in SPRJ1.

SPRJ1/TrafficLight Ref/SPRJ: queuedCmd, SqueuedCmd = {<undefined>,
cmd none, cmd cars ry, cmd cars y, cmd cars g, cmd cars r, cmd peds r,
cmd peds g} &
TqueuedCmd = {(<undefined>, INITIALISATION, cmd none)} ∪
{cmd none 7→ Send cmd(cars r) 7→ cmd cars r,
cmd none 7→ Send cmd(cars ry) 7→ cmd cars ry,
cmd none 7→ Send cmd(cars g) 7→ cmd cars g,
cmd none 7→ Send cmd(cars y) 7→ cmd cars y,
cmd none 7→ Send cmd(peds g) 7→ cmd peds g,
cmd none 7→ Send cmd(peds r) 7→ cmd peds r} ∪
{cmd cars r 7→ Reject cmd 7→ cmd none,
cmd cars ry 7→ Reject cmd 7→ cmd none,
cmd cars g 7→ Reject cmd 7→ cmd none,
cmd cars y 7→ Reject cmd 7→ cmd none,
cmd peds g 7→ Reject cmd 7→ cmd none,
cmd peds r 7→ Reject cmd 7→ cmd none} ∪
{cmd cars r 7→ cars r 7→ cmd none, cmd cars ry 7→ cars ry 7→ cmd none,
cmd cars g 7→ cars g 7→ cmd none, cmd cars y 7→ cars y 7→ cmd none,
cmd peds g 7→ peds g 7→ cmd none, cmd peds r 7→ peds r 7→ cmd none}

When validating PROB-TIM1, the modeler could apply hypothesis test-
ing, estimation of probability, or inspecting the simulation statistics. Here, we
will demonstrate the validation of this requirement by applying the hypothesis
testing VO HT1. The configuration to define a hypothesis depends on the tool.
In the context of ProB, in particular SimB, one needs to define the starting
condition (here a predicate stating that both traffic lights are red), the ending
condition (here a time of 30 seconds), the property to be checked (here a pred-
icate checking that the cars’ traffic light eventually turns green), the kind of
the hypothesis test (here left-tailed), and the desired probability (here 80 %).
Furthermore, the modeler also has to provide the number of simulations (here
1 000 000), and the significance level (here 1%). Validating PROB-TIM2 is
done similarly to PROB-TIM1 with the main difference that the property to
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be checked states that the pedestrians’ traffic light is green in the final state
instead of the cars’ traffic light (realized by HT2).

HT1/TrafficLight, TrafficLight Sim/HT: 1000000, (<PRED, tl cars = red
& tl peds = red>, <TIME, 30000>, <EVENTUALLY, tl cars = green>,
LEFT TAILED, 0.8), 0.01

HT2/TrafficLight, TrafficLight Sim/HT: 1000000, (<PRED, tl cars = red
& tl peds = red>, <TIME, 30000>, <EVENTUALLY, tl peds = green>,
LEFT TAILED, 0.8), 0.01

In the following, we are going to demonstrate validation of non-functional
requirements.

As described before COV1, COV2, and COV3 are coverage criteria for the
validation of SCENARIO1 and SCENARIO2. In the following, we assume
that SCENARIO1 and SCENARIO2 are already validated by other VOs,
e.g., TR1 and TR2 before.

In order to validate COV1, the modeler needs to inspect the variable cov-
erage table after validating SCENARIO1 and SCENARIO2. Here, it is
necessary to check whether the values for tl cars and tl peds are equal to 4
and 2 respectively.

VCT1/TrafficLight/VCT: Rvct(tl cars) = 4 & Rvct(tl peds) = 2

Similar to the validation of COV1, the modeler must also apply SCE-
NARIO1 and SCENARIO2 first to validate COV2. It is then necessary to
inspect the operation coverage table manually, to check whether all events have
been covered. This is realized by OCT1.

OCT1/TrafficLight/OCT:
{(cars ry, COVERED), (cars r, COVERED), (cars y, COVERED),
(cars r, COVERED), (peds r, COVERED), (peds g, COVERED)} = Roct

COV3 describes the desired statistics for the number of states and transi-
tions after validating SCENARIO1 and SCENARIO2. As SCENARIO1
and SCENARIO2 should also cover the whole state space, the statistics are
also expected to be equal to the statistics when applying explicit-state model
checking. In order to check this coverage criterion, the modeler has to check the
VO shown in STAT1 after validating SCENARIO1 and SCENARIO2. Fur-
thermore, STAT1 has to be checked after running explicit-state model checking
to cover the whole state space as shown in MC4.
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MC4/TrafficLight/MC: <FIN>

STAT1/TrafficLight/STAT: Rspstat(”Number of States”) = 6 &
Rspstat(”Number of Transitions”) = 7

The requirements STRUC1 and STRUC2 desire tl cars and tl peds

to be written by certain events. This can be encoded to the respective VOs
RWM1 and RWM2 directly. Those VOs has to be checked by inspecting the
read/write matrix manually.

RWM1/TrafficLight/RWM: Rrwm[{WRITE}]∼[{tl cars}] = {cars ry, cars g,
cars y, cars r}

RWM2/TrafficLight/RWM: Rrwm[{WRITE}]∼[{tl peds}] = {peds g,
peds r}

Again, ensuring that there are no vacuous parts in the invariant and guards
of the Traffic Light model (STRUC3) can be checked by the VOs shown in
VAP1 and VAP2.

VAP1/TrafficLight/VAP: INV

VAP2/TrafficLight/VAP: GRD

STRUC4 describes how events enable each other. This can be translated
to the corresponding VO EN1. In order to validate the requirement, this VO
is checked by inspecting the enabling diagram manually.

ED1/TrafficLight/ED:
{(cars ry, cars g), (cars g , cars y), (cars y , cars r), (cars r , cars ry),
(cars r, peds g), (peds g , peds r), (peds r , peds g), (peds r, cars ry)} = Red.

For the validation of STRUC5 and STRUC6, one could apply test case
generation. In order to validate STRUC5, test case generation covering all op-
erations with depth 5 could be applied which is realized by OC1. Again, MCDC
coverage test case generation with depth 5 is suitable to validate STRUC6 (see
MCDC1).
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OC1/TrafficLight/OC:[cars r, cars ry, cars g, cars r, peds g, peds r], 5

MCDC1/TrafficLight/MCDC:2,5

Other VOs to validate requirements Using the previous VOs, all require-
ments for the traffic light model have already been covered. In the following,
we will now demonstrate VOs that have not been used yet. Some VOs will be
demonstrated on existing requirements of the Traffic Light example. In con-
trast, there will also be VOs that will be demonstrated on other requirements,
or even other models.

Instead of validating SAF1 by checking MC1, it would also be possible to
apply symbolic model checking as mentioned before. The corresponding VO for
symbolic model checking would be as follows:

SMC1/TrafficLight/SMC: <INV, tl cars = red or tl peds = red>

Another possibility to validate SAF1 could be done by proving multiply
proof obligations. Here, it would be necessary to generate a PO for the initiali-
sation, and for each event checking whether it preserves the invariant describing
SAF1. As result, this would lead to seven POs being generated, one for each
operation, to validate SAF1. The proof obligation PO1 shows the proof obliga-
tion for invariant preservation of the property describing SAF1 from the event
cars ry. Note that proving POs might need some human interaction.

PO1/TrafficLight/PO: tl cars ∈ colors, tl peds ∈ {red, green}, tl peds = red
or tl cars = red, tl cars = red, tl peds = red, tl cars’ = redyellow, tl peds’ =
tl peds |= tl peds’ = red or tl cars’ = red

As an alternative to STAT1, one could also inspect the state space visual-
ization after validating SCENARIO1 and SCENARIO2, and applying MC4
manually. The corresponding VO is shown in SVIS1. As the state space can
grow very fast, it is often better in practice to inspect the state space statistics
after checking MC4 as realized by STAT1.

SVIS1/TrafficLight/SVIS: card(Zsvis) = 6 & card(Tsvis) = 7

As an alternative to LTL5.1 and LTL7.1., it would also be possible to apply
CTL model checking to expect a positive result. This is illustrated in CTL1
and CTL2.
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CTL1/TrafficLight/CTL: EF{tl cars 6= red}, SUCCESS

CTL2/TrafficLight/CTL: EF{tl peds 6= red}, SUCCESS

Instead of applying hypothesis testing, it would also be possible to validate
PROB-TIM1 by estimating the probability. The configuration for the check
depends on the tool. Similar to hypothesis testing, the parameters contain the
number of simulations, the starting condition, the ending condition, the property
to be checked, the kind of estimation checking, and the desired probability. The
only difference is the δ value which is used instead of the α value.

EOP1/TrafficLight, TrafficLight Sim/EOP: 1000000, (<PRED, tl cars =
red & tl peds = red>, <TIME, 30000>, <EVENTUALLY, tl cars = green>,
LEFT TAILED, 0.8), 0.01

Now, we will introduce a new requirement to demonstrate the VO for prob-
abilistic/statistical model checking:

PROB1: Whenever both traffic lights are red, the pedestrians’ traffic light
will turn green with a probability of 50% next.

In order to apply probabilistic/statistical model checking, the modeler has
to encode a markov chain as well. So, the demonstration of the corresponding
VO is the only one that is not demonstrated using the B method and ProB.
An encoding of the Traffic Light model in PRISM is shown in Listing 3. This is
also the context for the VO PSMC1. Here, the probability to choose between
the cars’ cycle and the pedestrians’ cycle is defined as 50% for each.

mdp

module TrafficLight_PRISM

tl_cars : [0..3] init 0;
tl_peds : [0..3] init 0;

[] tl_cars =0 & tl_peds = 0 -> 0.5:( tl_cars ’=1) + 0.5:( tl_peds ’=2);
[] tl_cars =1 -> (tl_cars ’ = 2);
[] tl_cars =2 -> (tl_cars ’ = 3);
[] tl_cars =3 -> (tl_cars ’ = 0);
[] tl_peds =2 -> (tl_peds ’ = 0);

endmodule

Listing 3: Traffic Light in PRISM

Validating PROB1 is then done by checking the VO defined in PSMC1
which expects a PCTL formula.
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PSMC1/TrafficLight PRISM/PSMC: P>0.9999[¬(true U (¬((tl cars = 0 &
tl peds = 0) =⇒ (P>0.49 [ X (tl peds = 2) ] & P<0.51 [ X (tl peds = 2) ]))))],
SUCCESS

Another alternative to validate PROB1 is the simulation statistics VO:

SISTAT1/TrafficLight, TrafficLight Sim/SISTAT: 10000, <PRED, 1=1>,
<STEPS, 100>, Rsistat(enabled 7→ peds g)/Rsistat(executed 7→ peds g) ∈ [0.49,
0.51]

As the Traffic Light model contains variables from the type colors only,
it is not possible to inspect minimum and maximum values. Let us consider a
lift moving between the ground level and the 100th level. Furthermore, assume
that the level is modeled by a variable level. Consider a scenario shown in
SCENARIO-LIFT.

SCENARIO-LIFT:/In the beginning, the lift is located at the ground level.
It then moves floor by floor until it reaches the third level.

After validating SCENARIO-LIFT, i.e., after re-playing the scenario, it
is expected that the lift has moved between the ground floor and the third level.
The corresponding requirement is shown in COV-LIFT.

COV-LIFT:/After validating SCENARIO-LIFT, it is expected that the
lift has moved between the ground floor and the third level.

COV-LIFT could then be validated by the VO inspecting the minimum
and maximum value as shown in MMV1.

MMV1/Lift/MMV: min(Rmmv(level)) = 0 & max(Rmmv(level)) = 3

A requirement describing a scenario could also be validated by multiple VOs
from different types. This will be demonstrated in an automotive case study
[56]. Consider the scenario shown in SCENARIO-AUTO.

SCENARIO-AUTO:
In this scenario, it is assumed that the engine is turned on, and the blinker is in
position Downward7.
After 500 ms, the lights on the left-hand side turn on with an intensity of 100.
When passing another 500ms, the lights on the left-hand side turn off.
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Both events are repeated in the same order one more time.
While the lights on the left-hand side are blinking, those on the right-hand side
are always turned off.

First, the assumption of the scenario (engine turned on, and blinker in po-
sition Downward7) is validated by finding a state from which the other events
of the scenario are executed. This is realized by the explicit-state model check
MC-AUTO. Outgoing from the state that should be found, the rest of the
scenario is then validated via trace replay which is realized by TR-AUTO.

MC-AUTO/PitmanController Time MC v4/MC:
<GOAL, engineOn = TRUE & pitmanArmUpDown = Downward7>

TR-AUTO/PitmanController Time MC v4/TR:
[RTIME BlinkerOn(delta=500) <blinkLeft = 100, blinkRight=0>,

RTIME BlinkerOff(delta=500) <blinkLeft = 0, blinkRight=0>,
RTIME BlinkerOn(delta=500) <blinkLeft = 100, blinkRight=0>,
RTIME BlinkerOff(delta=500) <blinkLeft = 0, blinkRight=0>]

A Glossary

State The state of a software system is represented by the values of its vari-
ables (and constants).

Operation An operation is a term that is well-known from the formal B
method. Analogous terms are, e.g., events or actions. It consists of a guard,
several effects, and optionally input and return parameters. A guard is a predi-
cate corresponding to an operation which is true when the operation is enabled.
When executing the operation, the effects are applied to the current state, mod-
ifying it to the succeeding state.

Transition A transition is labeled with an operation (and its parameters),
and defined between two states s1 and s2 under the following condition: The
operation together with its parameters is enabled in s1, and executing the op-
eration with the parameters modifies s1 resulting in s2.

State Space A state space shows all possible executions of the system. It
consists of a set of states and transitions between them.
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Trace A trace is a finite number of transitions describing a path through the
state space. Each transition consists out of the name of the operation/event/-
function that was used to reach the next state and predicates that describe the
next state, and the input and output of the operation/event/function.

Scenario A scenario is a sequence of events in which certain behavior patterns
are desired. In general, a scenario can be described in natural language. It is
realized as a trace, and can be the result of a simulation.

Differences between Scenario and Traces While researching literature
it became apparent that the terms of trace and scenario have different mean-
ings in the formal methods community. Scenarios have also different meanings
depending on the domain and context they are used in [45, 68, 57, 72]. In
the referenced paper it is somewhat agreed that a scenario describes a desired
behavior. For software development, a scenario is then often expressed in a
non-ambiguous DSL like Gherkin [94]. In software engineering, there is the sen-
timent that traces are a realisation of a scenario, shown for example in [62].
Depending on the underlying formalism a scenario can therefore have multiple
traces that satisfy it.

Verification Verification checks whether a model meets its specification. So,
here we ask the question: Are we building the software correctly?.

Validation Validation checks whether a model meets the stakeholder’s re-
quirements. So the main question is: Are we building the right software?.

Validation Technique A validation technique is a technique that can be
used to validate a requirement. For example, one could validate a requirement
describing a temporal property by LTL model checking. In this case, LTL model
checking is the validation technique.

Validation Task A validation task (VT) is a task corresponding to a val-
idation technique that is formulated by the modeler, in order to validate a
requirement. Executing the validation task leads to a binary outcome (TRUE
or FALSE) describing whether the task was applied successfully. Validating a
requirement succeeds if all associated validation tasks yield successful results.
Thus, a validation task can be one of many tasks which are used to validate a
single requirement.

As an example for a validation task, we consider the requirement ”Cars’
traffic light can either be red, red and yellow, yellow, or green.”. Here, it
could be validated by an explicit-state model check with the invariant tl cars ∈
{red, redyellow, yellow, green}.
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B Traffic Light Refinement

MACHINE TrafficLight2
SETS colors = {red , redyellow , yellow , green};

COMMANDS = {cmd_cars_ry , cmd_cars_y , cmd_cars_g ,
cmd_cars_r , cmd_peds_r , cmd_peds_g , cmd_none}

VARIABLES tl_cars , tl_peds
INVARIANT tl_cars : colors & tl_peds : {red , green} &

(tl_peds = red or tl_cars = red)

INITIALISATION tl_cars := red || tl_peds := red
OPERATIONS
Send_cmd(cmd) = SELECT cmd : COMMANDS THEN skip END;
Reject_cmd = skip;

cars_ry = SELECT tl_cars = red & tl_peds = red THEN tl_cars := redyellow END;
cars_y = SELECT tl_cars = green THEN tl_cars := yellow END;
cars_g = SELECT tl_cars = redyellow THEN tl_cars := green END;
cars_r = SELECT tl_cars = yellow THEN tl_cars := red END;
peds_r = SELECT tl_peds = green THEN tl_peds := red END;
peds_g = SELECT tl_cars = red & tl_peds = red THEN tl_peds := green END

END

Listing 4: Abstract Traffic Light

REFINEMENT TrafficLightCommand_Ref REFINES TrafficLight2
VARIABLES tl_cars , tl_peds , queuedCmd
INVARIANT queuedCmd : COMMANDS
INITIALISATION tl_cars := red || tl_peds := red || queuedCmd := cmd_none
OPERATIONS

Send_cmd(cmd) =
SELECT cmd : COMMANDS & cmd /= cmd_none & queuedCmd = cmd_none
THEN

queuedCmd := cmd
END;

Reject_cmd =
SELECT queuedCmd /= cmd_none
THEN

queuedCmd := cmd_none
END;

cars_ry =
SELECT

tl_cars = red & tl_peds = red & queuedCmd = cmd_cars_ry
THEN

tl_cars := redyellow ||
queuedCmd := cmd_none

END;

cars_y =
SELECT

tl_cars = green & queuedCmd = cmd_cars_y
THEN
tl_cars := yellow ||
queuedCmd := cmd_none

END;

cars_g =
SELECT

tl_cars = redyellow & queuedCmd = cmd_cars_g
THEN

tl_cars := green ||
queuedCmd := cmd_none

END;

cars_r =
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SELECT
tl_cars = yellow & queuedCmd = cmd_cars_r

THEN
tl_cars := red ||
queuedCmd := cmd_none

END;

peds_r =
SELECT

tl_peds = green & queuedCmd = cmd_peds_r
THEN

tl_peds := red ||
queuedCmd := cmd_none

END;

peds_g =
SELECT

tl_cars = red & tl_peds = red & queuedCmd = cmd_peds_g
THEN

tl_peds := green ||
queuedCmd := cmd_none

END

END

Listing 5: Traffic Light Refinement
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C Overview VO Examples

Trace Replay VO:

TR1/TrafficLight/TR: [INITIALISATION <tl cars = red & tl peds = red>,
cars ry <tl cars = redyellow & tl peds = red>, cars g <tl cars = green & tl peds
= red}, cars y <tl cars = yellow & tl peds = red>, cars r <tl cars = red & tl peds
= red>]

Trace Refinement VO:

TRF1/TrafficLight2, TrafficLightCommand Ref/TRF: [INITIALISATION
<tl cars = red & tl peds = red>, Send cmd(cmd=cmd cars ry), cars ry <tl cars
= redyellow & tl peds = red>, Send cmd(cmd=cmd cars g), cars g <tl cars =
green & tl peds = red}, Send cmd(cmd=cmd cars y), cars y <tl cars = yellow &
tl peds = red>, Send cmd(cmd=cmd cars r), cars r <tl cars = red & tl peds =
red>]

Operation Coverage Test Case Generation VO:

OC1/TrafficLight/OC:[cars r, cars ry, cars g, cars r, peds g, peds r], 5

MC/DC Coverage Test Case Generation VO:

MCDC1/TrafficLight/MCDC:2,5

Hypothesis Testing VO:

HT1/TrafficLight, TrafficLight Sim/HT: 1000000, (<PRED, tl cars = red
& tl peds = red>, <TIME, 30000>, <EVENTUALLY, tl cars = green>,
LEFT TAILED, 0.8), 0.01

Estimation of Probability VO:

EOP1/TrafficLight, TrafficLight Sim/EOP: 1000000, (<PRED, tl cars =
red & tl peds = red>, <TIME, 30000>, <EVENTUALLY, tl cars = green>,
LEFT TAILED, 0.8), 0.01

Simulation Statistics VO:

43



SISTAT1/TrafficLight, TrafficLight Sim/SISTAT: 10000, <PRED, 1=1>,
<STEPS, 100>, Rsistat(enabled 7→ cars ry)/Rsistat(executed 7→ cars ry) ∈ [0.49,
0.51]

Explicit-State Model Checking VO:

MC1/TrafficLight/MC: <INV, tl cars = red or tl peds = red>

LTL Model Checking VO:

LTL1/TrafficLight/LTL: {tl cars = red & tl peds = red}, SUCCESS

CTL Model Checking VO:

CTL1/TrafficLight/CTL: EF{tl cars 6= red}, SUCCESS

Probabilistic/Statistical Model Checking VO:

PSMC1/TrafficLight PRISM/PSMC: P>0.9999[¬(true U (¬((tl cars = 0 &
tl peds = 0) =⇒ (P>0.49 [ X (tl peds = 2) ] & P<0.51 [ X (tl peds = 2) ]))))],
SUCCESS

Symbolic Model Checking VO:

SMC1/TrafficLight/SMC: <INV, tl cars = red or tl peds = red>

Proving VO:

PO1/TrafficLight/PO: tl cars ∈ colors, tl peds ∈ {red, green}, tl peds = red
or tl cars = red, tl cars = red, tl peds = red, tl cars’ = redyellow, tl peds’ =
tl peds |= tl peds’ = red or tl cars’ = red

Variable Coverage Table VO:

VCT1/TrafficLight/VCT: Rvct(tl cars) = 4 & Rvct(tl peds) = 2

Min/Max Values VO:
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MMV1/Lift/MMV: min(Rmmv(level)) = 0 & max(Rmmv(level)) = 3

Operation Coverage Table VO:

OCT1/TrafficLight/OCT:
{(cars ry, COVERED), (cars r, COVERED), (cars y, COVERED),
(cars r, COVERED), (peds r, COVERED), (peds g, COVERED)} = Roct

Read/Write Matrix VO:

RWM1/TrafficLight/RWM: Rrwm[{WRITE}]∼[{tl cars}] = {cars ry, cars g,
cars y, cars r}

Enabling Diagram VO:

ED1/TrafficLight/ED:
{(cars ry, cars g), (cars g , cars y), (cars y , cars r), (cars r , cars ry),
(cars r, peds g), (peds g , peds r), (peds r , peds g), (peds r, cars ry)} = Red.

Vacuous Parts VO:

VAP1/TrafficLight/VAP: INV

State Space Visualization VO:

SVIS1/TrafficLight/SVIS: card(Zsvis) = 6 & card(Tsvis) = 7
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State Space Projection VO:

SPRJ1/TrafficLight Ref/SPRJ: queuedCmd, SqueuedCmd = {<undefined>,
cmd none, cmd cars ry, cmd cars y, cmd cars g, cmd cars r, cmd peds r,
cmd peds g} &
TqueuedCmd = {(<undefined>, INITIALISATION, cmd none)} ∪
{cmd none 7→ Send cmd(cars r) 7→ cmd cars r,
cmd none 7→ Send cmd(cars ry) 7→ cmd cars ry,
cmd none 7→ Send cmd(cars g) 7→ cmd cars g,
cmd none 7→ Send cmd(cars y) 7→ cmd cars y,
cmd none 7→ Send cmd(peds g) 7→ cmd peds g,
cmd none 7→ Send cmd(peds r) 7→ cmd peds r} ∪
{cmd cars r 7→ Reject cmd 7→ cmd none,
cmd cars ry 7→ Reject cmd 7→ cmd none,
cmd cars g 7→ Reject cmd 7→ cmd none,
cmd cars y 7→ Reject cmd 7→ cmd none,
cmd peds g 7→ Reject cmd 7→ cmd none,
cmd peds r 7→ Reject cmd 7→ cmd none} ∪
{cmd cars r 7→ cars r 7→ cmd none, cmd cars ry 7→ cars ry 7→ cmd none,
cmd cars g 7→ cars g 7→ cmd none, cmd cars y 7→ cars y 7→ cmd none,
cmd peds g 7→ peds g 7→ cmd none, cmd peds r 7→ peds r 7→ cmd none}

State Space Statistics VO:

STAT1/TrafficLight/STAT: Rspstat(”Number of States”) = 6 &
Rspstat(”Number of Transitions”) = 7

Multiple VOs for Validation:

MC-AUTO/PitmanController Time MC v4/MC:
<GOAL, engineOn = TRUE & pitmanArmUpDown = Downward7>

TR-AUTO/PitmanController Time MC v4/TR:
[RTIME BlinkerOn(delta=500) <blinkLeft = 100, blinkRight=0>,

RTIME BlinkerOff(delta=500) <blinkLeft = 0, blinkRight=0>,
RTIME BlinkerOn(delta=500) <blinkLeft = 100, blinkRight=0>,
RTIME BlinkerOff(delta=500) <blinkLeft = 0, blinkRight=0>]

D Published Papers

In the following, we list the papers that are published in the context of D 1.1.
of the IVOIRE project:
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• Atif Mashkoor, Michael Leuschel, Alexander Egyed. Validation Obliga-
tions: A Novel Approach to Check Compliance between Requirements and
their Formal Specification [61]

• Fabian Vu, Michael Leuschel, Atif Mashkoor. Validation of Formal Models
by Timed Probabilistic Simulation [90]

• Atif Mashkoor, Alexander Egyed. Evaluating the alignment of sequence
diagrams with system behavior [60]

• Jens Bendisposto, David Geleßus, Yumiko Jansing, Michael Leuschel, An-
tonia Pütz, Fabian Vu, Michelle Werth. ProB2-UI: A Java-Based User
Interface for ProB [10] (extended in context of IVOIRE)
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wise Refinement Validation of Design Patterns Formalized in TLA+ using
the TLC Model Checker.” In: J. Object Technol. 8.2 (2009), pp. 137–161.

[82] Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. “Azucar: A
SAT-Based CSP Solver Using Compact Order Encoding”. In: Theory
and Applications of Satisfiability Testing – SAT 2012. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 456–462. isbn: 978-3-642-31612-8.

[83] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. “From Formal
Specification in Event-B to Probabilistic Reliability Assessment”. In: De-
pendability, International Conference on (July 2010), pp. 24–31. doi: 10.
1109/DEPEND.2010.12.

[84] The Alloy Analyzer. url: https://alloytools.org/ (visited on 06/16/2021).

[85] The ProB Animator and Model Checker Wiki.

[86] Casper Thule et al. “Maestro: The INTO-CPS co-simulation framework”.
In: Simul. Model. Pract. Theory 92 (2019), pp. 45–61. doi: 10.1016/j.
simpat.2018.12.005. url: https://doi.org/10.1016/j.simpat.
2018.12.005.

53

https://doi.org/10.1109/DEPEND.2010.12
https://doi.org/10.1109/DEPEND.2010.12
https://alloytools.org/
https://doi.org/10.1016/j.simpat.2018.12.005
https://doi.org/10.1016/j.simpat.2018.12.005
https://doi.org/10.1016/j.simpat.2018.12.005
https://doi.org/10.1016/j.simpat.2018.12.005


[87] Amirhossein Vakili and Nancy A Day. “Temporal logic model checking in
Alloy”. In: International Conference on Abstract State Machines, Alloy,
B, VDM, and Z. Springer. 2012, pp. 150–163.

[88] “Validation”. In: IEEE Std 610 (1991), pp. 1–217. doi: 10.1109/IEEESTD.
1991.106963.

[89] “Verification”. In: IEEE Std 610 (1991), pp. 1–217. doi: 10.1109/IEEESTD.
1991.106963.

[90] Fabian Vu, Michael Leuschel, and Atif Mashkoor. “Validation of Formal
Models by Timed Probabilistic Simulation”. In: International Conference
on Rigorous State-Based Methods. Springer. 2021, pp. 81–96.

[91] Fabian Vu et al. “A multi-target code generator for high-level B”. In:
International Conference on Integrated Formal Methods. Springer. 2019,
pp. 456–473.

[92] Michelle Werth and Michael Leuschel. “VisB: A Lightweight Tool to Visu-
alize Formal Models with SVG Graphics”. In: Rigorous State-Based Meth-
ods. Ed. by Alexander Raschke, Dominique Méry, and Frank Houdek.
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