

## LINZ INSTITUTE OF TECHNOLOGY

Heinrich Heine Universität Düsseldorf



#### **IVOIRE Project Results**



#### **Atif Mashkoor**

IVOIRE Workshop June 25, 2024 Bergamo, Italy





JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

#### **Project team members**

LINZ INSTITUTE OF TECHNOLOG



• Pls

- Atif Mashkoor
- Michael Leuschel
- Alexander Egyed
- PhD students
  - Sebastian Stock
  - ° Fabian Vu
  - David Geleßus
- Time frame: Oct 2020 Sep 2024

3

#### **Motivation**

- The use of formal methods is highly recommended for quality assurance (QA) of safety-critical systems
- Techniques for programs specification, development and reasoning about their correctness based on mathematics and logic
- Verification often takes the center stage
- Validation is somehow neglected, especially in the stepwise refinement process



![](_page_3_Figure_6.jpeg)

#### **Stepwise model development**

![](_page_4_Figure_1.jpeg)

![](_page_4_Picture_2.jpeg)

#### **Proof obligations vs validation obligations**

- Proof obligation (PO) is a logical formula associated with the consistency claim of a given verification property
- Verification(specification) =  $\Sigma$  POs(specification)
- Analogous to the idea of PO, we propose to break the overall validation of a specification and associate it with each refinement step
- A validation obligation (VO) is a logical formula associated with the correctness claim of a given validation property
- Validation(specification) =  $\Sigma$  VOs(specification)

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_7.jpeg)

#### **Validation obligation**

A validation obligation (VO) formally represents the connection between a requirement, a model, and one or more validation tasks.

req/model : tasks

Req1  $\triangleq$  *G*{moving = TRUE  $\Rightarrow$  door\_open = FALSE} a lift only moves when its doors are closed

 $LTL1 \triangleq LTL(G\{moving = TRUE \Rightarrow door_open = FALSE\})$ 

Req1/Lift : LTL1

Atif Mashkoor, Michael Leuschel, Alexander Egyed: Validation Obligations: A Novel Approach to Check Compliance between Requirements and their Formal Specification. ICSE (NIER) 2021: 1-5

![](_page_6_Picture_7.jpeg)

#### **Validation tasks**

| Туре | Technique                     | Parameters                                   | Automation | Result type(s)                                                                    |
|------|-------------------------------|----------------------------------------------|------------|-----------------------------------------------------------------------------------|
| TR   | Trace replay/animation        | Trace T, task(s) expr returning trace        | Automatic  | {status, statespace, trace}                                                       |
| SIM  | Simulation                    | Property P                                   | Automatic  | {status, statespace}                                                              |
| MC   | Explicit-state model checking | Property P, task(s) expr returning trace     | Automatic  | {status, statespace} or<br>{status, statespace, trace}<br>{status, statespace} or |
| LTL  | LTL model checking            | LTL property P, task(s) expr returning trace | Automatic  | {status, statespace, trace}                                                       |
| CTL  | CTL model checking            | CTL property P, task(s) expr returning trace | Automatic  | {status, statespace} or<br>{status, statespace, trace}<br>{status, statespace} or |
| SMC  | Symbolic model checking       | Property P                                   | Automatic  | {status, statespace, trace}                                                       |
| РО   | Proving                       | Proof P                                      | Automatic  | {status}                                                                          |
| VIS  | Inspection of visualization   | Visualization V, task(s) expr                | Manual     | {status}                                                                          |
| STAT | Inspection of statistics      | Statistics S, task(s) expr                   | Automatic  | {status}                                                                          |
| TAB  | Inspection of table           | Table T, task(s) expr                        | Automatic  | {status}                                                                          |
| root | None (returns initial state)  | None                                         | Automatic  | {status, statespace, trace}                                                       |

![](_page_7_Picture_2.jpeg)

## 

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_2.jpeg)

#### **Rigorous method (Event-) B**

- Set theory and first-order logic
- 1-1 level of refinement, higher degree of automatic proofs
- Correctness by design
- Old and proven, much industrial experience
- Good tool support, esp. for verification
- ProB

![](_page_9_Figure_7.jpeg)

Atif Mashkoor, Felix Kossak, Alexander Egyed: Evaluating the suitability of state-based formal methods for industrial deployment. Software: Practice & Experience 48(12): 2350-2379 (2018)

![](_page_9_Picture_9.jpeg)

#### **VO Manager in ProB2-UI**

- Tool support for validation obligations
- The user defines VOs to link requirements to formal models and validation tasks
- Supports all verification/validation techniques in ProB2-UI
- Automated checking of entire projects (except tasks that require human validation)

| ▼ Req1                                             | ×   |
|----------------------------------------------------|-----|
| M0_AMAN_Update: LTL_1 & CTL_Add_0 & CTL_Add_1      | × . |
| ▼ Req2                                             | ~   |
| M0_AMAN_Update: LTL_2 & CTL_Remove_1 & CTL_Re      | ~   |
| ▼ Req3                                             | 0   |
| M1_Landing_Sequence: LTL_Move                      | 0   |
| ▼ Req4                                             | ~   |
| M2_Hold_Button: HOLD1 & M2_Scenario_Hold_Reappear  | ~   |
| ▼ Req5                                             | ~   |
| M10_GUI: no_overlap_wd & no_overlap_1 & no_overlap | ~   |
| ▼ Req5.1                                           | ~   |
| M1_Landing_Sequence: DIST1 & DIST2 & DIST3         | ~   |
| ▼ Req6                                             | ~   |
| M3_Block_Timeslots_prob_mc2: BLOCK_LTL             | ~   |
| M3_Block_Timeslots: BLOCK1 & BLOCK2 & BLOCK3 & B.  | . 🗸 |
| ▼ Req7                                             | ~   |
| M1_Landing_Sequence: M1_Scenario_3                 | ×   |
| M3_Block_Timeslots: M3_Scenario_3 & M3_Scenario_4  | ~   |
| ▼ Req7_Scenario                                    | ~   |
| M1_Landing_Sequence: M1_Scenario_3                 | ~   |
| M3_Block_Timeslots: M3_Scenario_3 & M3_Scenario_4  | ~   |
|                                                    |     |

Jens Bendisposto et al. "ProB2-UI: A Java-based User Interface for ProB." In: Proceedings FMICS. LNCS 12863. 2021, pp. 193–201.

![](_page_10_Picture_7.jpeg)

#### **SimB: Timed Probabilistic Simulation**

- SimB simulator with timed and probabilistic elements for formal models
- Simulation encoded by Activation Diagram
- Validation: Real-Time Simulation, Monte Carlo Simulation, Hypothesis testing, Estimation of Values and Probabilities
- User Interaction to trigger Simulation;
  Validation by State Space Projection

![](_page_11_Figure_5.jpeg)

Fabian Vu, Michael Leuschel, and Atif Mashkoor. "Validation of Formal Models by Timed Probabilistic Simulation." In: Proceedings ABZ. LNCS 12709. 2021, pp. 81–96.

![](_page_11_Picture_7.jpeg)

#### **VisB: Interactive Simulation**

- Extension by interactive elements
- Coordination of User Interaction and System Response
- Validating Requirements of the form "when triggering action, A, then we expected response R"
- Validation by State Space Projection

![](_page_12_Figure_5.jpeg)

Fabian Vu and Michael Leuschel. "Validation of Formal Models by Interactive Simulation." In: Proceedings ABZ. LNCS 14010. 2023, pp. 59–69.

![](_page_12_Picture_7.jpeg)

#### **B2Program: Code Generation for Validation**

- Domain-specific Visualization for Static/Dynamic Export
- Static Export of Single Execution Trace for a Formal Model
- Dynamic Export of Classical B Model to HTML
- Extension of B2Program by TypeScript/JavaScript for Dynamic Export
- Early-stage validation by Domain Experts without knowledge of formal methods (tools)
- Animation, Simulation, and Sharing of Scenarios between Modelers and Domain Experts with Feedback

LINZ INSTITUTE

![](_page_13_Figure_7.jpeg)

- Fabian Vu, Christopher Happe, and Michael Leuschel. "Generating Domain-Specific Interactive Validation Documents." In: Proceedings FMICS. LNCS 13487. 2022, pp. 32– 49.
- Fabian Vu, Christopher Happe, and Michael Leuschel. "Generating interactive documents for domain-specific validation of formal models." In: International Journal on Software Tools for Technology Transfer 6.2 (2024), pp. 147–168.

#### **B2Program: Code Generation for Validation**

![](_page_14_Figure_1.jpeg)

#### **Trace refinement for result adaptation**

- Preserve desirable traces during refinement
- Deal with renaming, stuttering and skip
- Tool support
- Findings
  - Helps to find counterparts
  - May point out counterexamples

![](_page_15_Figure_7.jpeg)

Fig. 1: Example output of the tool

Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace Refinement in B and Event-B. ICFEM 2022: 316-333 Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace preservation in B and Event-B refinements. J. Log. Algebraic Methods Program. 137: 100943 (2024)

#### JYU LINZ INSTITUTE OF TECHNOLOGY

# Failure divergence refinement for result preservation

- Failure-divergence refinement for Event-B
- Proof that failure-divergence refinement preserves trace properties
- ALL OPERATIONS COVERED machine2\_additional\_parameter\_mch.eventb is a failure\_divergences refinement of machine1\_mch\_refine\_spec.P % Refinement Check [FD=] CPU Time: 50 ms Runtime for refinement\_check: 51 ms ==> Refinement Check Successful

Fig. 2: Successful failure divergence refinement

- Implement tool support
- Less work for validation
  - Results can be kept

MAbs\_helper\_prob\_mc\_mch.eventb is \*not\* a failure\_divergences refinement of MAbs\_prob\_mc\_mch\_refine\_spec.P % Refinement Check [FD=] CPU Time: 60 ms finding trace from to(root)

Runtime for refinement\_check: 64 ms \*\*\* Refinement Check Counter-Example: \*\*\* [\$initialise\_machine,DIVERGES,however at this position the specification could do:,[Move\_Mouse\_Hold,Move\_M

Fig. 3: Unsuccessful failure divergence refinement with counter example

Sebastian Stock, Michael Leuschel, Atif Mashkoor, and Alexander Egyed, Failure divergence refinement for Event-B, submitted to iFM 2024

![](_page_16_Picture_12.jpeg)

#### Validation-driven development

- Making validation the objective
  - How can we show the presence of the requirements in the model?
- "A priori" workflow
  - Formulate a VO

INZ INSTITUT

- Implement
- Verify
- Validate
- Validation becomes the driving force of modeling process

![](_page_17_Figure_9.jpeg)

Fig. 4: Validation focused workflow

#### **VDD** - workflow

- 1. Finding a good model structure
  - a. Problem Frames to sort knowledge
  - b. Create refinement strategy
  - C. Plan VOs
- 2. A priori strategy
  - a) Implement model
  - b) Verify
  - C) Validate
- 3. Refine the model
  - a) Adapt VOs
  - b) Repeat 2)

![](_page_18_Picture_12.jpeg)

![](_page_18_Picture_13.jpeg)

#### AMAN Case Study (ABZ 2023)

- First application of VOs during the development of a new, large formal model
- Comparison of a priori vs. a posteriori VO development
- Validation using both automatic validation tasks (model checking, trace replay, proof) and manual ones (visualization)
- Use of VOs during modeling uncovered unclear/ambiguous requirements

![](_page_19_Picture_5.jpeg)

D. Geleßus et al. "Modeling and Analysis of a Safety-critical Interactive System through Validation Obligations." In: Rigorous State-Based Methods. ABZ 2023. LNCS 14010. June 2023, pp. 284–302.

![](_page_19_Picture_7.jpeg)

#### Conclusion

![](_page_20_Picture_1.jpeg)

- Verification and validation are equally important activities and, hence, merit equal attention
- The IVOIRE methodology puts validation at the center of refinement-based development
- VOs can provide POs like semantics to the concept of formal validation

![](_page_20_Picture_5.jpeg)

#### **IVOIRE 2022 (Lugano, Switzerland)**

![](_page_21_Picture_1.jpeg)

#### **IVOIRE 2023 (Nancy, France)**

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

#### References

- Atif Mashkoor, Michael Leuschel, Alexander Egyed: Validation Obligations: A Novel Approach to Check Compliance between Requirements and their Formal Specification. ICSE (NIER) 2021: 1-5
- Jens Bendisposto, David Geleßus, Yumiko Jansing, Michael Leuschel, Antonia Pütz, Fabian Vu, Michelle Werth: ProB2-UI: A Java-Based User Interface for ProB. FMICS 2021: 193-201 Fabian Vu, Michael Leuschel, Atif Mashkoor: Validation of Formal Models by Timed Probabilistic Simulation. ABZ 2021: 81-96
- Fabian Vu, Dominik Brandt, and Michael Leuschel. "Model Checking B Models via High-level Code Generation." In: Proceedings ICFEM. LNCS 13478. 2022, pp. 334–351.
- Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace Refinement in B and Event-B. ICFEM 2022: 316-333
- Fabian Vu, Michael Leuschel: Validation of Formal Models by Interactive Simulation. ABZ 2023: 59-69
- Sebastian Stock, Atif Mashkoor, Alexander Egyed: Validation-Driven Development. ICFEM 2023: 191-207
- David Geleßus, Sebastian Stock, Fabian Vu, Michael Leuschel, Atif Mashkoor: Modeling and Analysis of a Safety-Critical Interactive System Through Validation Obligations. ABZ 2023: 284-302
- Sebastian Stock, Fabian Vu, David Geleßus, Michael Leuschel, Atif Mashkoor, Alexander Egyed: Validation by Abstraction and Refinement. ABZ 2023: 160-178
- Fabian Vu, Jannik Dunkelau, and Michael Leuschel. "Validation of Reinforcement Learning Agents and Safety Shields with ProB." In: Proceedings NFM. LNCS 14627. 2024, pp. 279–297.
- Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace preservation in B and Event-B refinements. J. Log. Algebraic Methods Program. 137: 100943 (2024)

![](_page_23_Picture_11.jpeg)

![](_page_24_Picture_0.jpeg)

## LINZ INSTITUTE OF TECHNOLOGY