

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Atif Mashkoor

IVOIRE Project Results

IVOIRE Workshop
June 25, 2024
Bergamo, Italy

• PIs
◦ Atif Mashkoor
◦ Michael Leuschel
◦ Alexander Egyed

• PhD students
◦ Sebastian Stock
◦ Fabian Vu
◦ David Geleßus

• Time frame: Oct 2020 –
Sep 2024

Project team members

3

Motivation

• The use of formal methods is highly
recommended for quality assurance (QA) of
safety-critical systems
• Techniques for programs specification,

development and reasoning about their
correctness based on mathematics and
logic
• Verification often takes the center stage
• Validation is somehow neglected, especially

in the stepwise refinement process

4

Stepwise model development

5

Abstract model

Refinement

Refinement

Implementation

Verification, e.g.,
proofs

Verification, e.g.,
proofs

Validation, e.g.,
animation

Validation, e.g.,
animation

Verification, e.g.,
proofs

Validation, e.g.,
animation

Proof obligations vs validation obligations

• Proof obligation (PO) is a logical formula associated with the
consistency claim of a given verification property
• Verification(specification) = Σ POs(specification)
• Analogous to the idea of PO, we propose to break the

overall validation of a specification and associate it with
each refinement step
• A validation obligation (VO) is a logical formula associated

with the correctness claim of a given validation property
• Validation(specification) = Σ VOs(specification)

6

Validation obligation

Atif Mashkoor, Michael Leuschel, Alexander Egyed: Validation Obligations: A Novel Approach to Check Compliance between Requirements and their Formal Specification. ICSE (NIER) 2021: 1-5

7

A validation obligation (VO) formally represents the connection between a requirement, a
model, and one or more validation tasks.

req/model : tasks

 Req1 ≜ 𝐺{moving = TRUE ⇒ door_open = FALSE}
a lift only moves when its doors are closed

LTL1 ≜ LTL(𝐺{moving = TRUE ⇒ door_open = FALSE})

Req1/Lift : LTL1

Validation tasks

8

IV IRE

9

Rigorous method (Event-) B

• Set theory and first-order logic

• 1-1 level of refinement, higher degree of

automatic proofs

• Correctness by design

• Old and proven, much industrial experience

• Good tool support, esp. for verification

• ProB

Atif Mashkoor, Felix Kossak, Alexander Egyed: Evaluating the suitability of state-based formal methods for industrial deployment. Software: Practice & Experience 48(12): 2350-2379 (2018)

10

VO Manager in ProB2-UI

• Tool support for validation obligations
• The user defines VOs to link requirements to formal

models and validation tasks
• Supports all verification/validation techniques in ProB2-

UI
• Automated checking of entire projects (except tasks that

require human validation)

Jens Bendisposto et al. “ProB2-UI: A Java-based User Interface for ProB.” In: Proceedings FMICS. LNCS 12863. 2021,
pp. 193–201.

11

SimB: Timed Probabilistic Simulation

• SimB simulator with timed and probabilistic
elements for formal models

• Simulation encoded by Activation Diagram
• Validation: Real-Time Simulation, Monte

Carlo Simulation, Hypothesis testing,
Estimation of Values and Probabilities

• User Interaction to trigger Simulation;
Validation by State Space Projection

12

Fabian Vu, Michael Leuschel, and Atif Mashkoor. “Validation of Formal Models by Timed Probabilistic Simulation.” In: Proceedings ABZ. LNCS 12709. 2021, pp. 81–96.

VisB: Interactive Simulation

• Extension by interactive elements
• Coordination of User Interaction and System

Response
• Validating Requirements of the form “when

triggering action, A, then we expected
response R”

• Validation by State Space Projection

hhu.de 15

Fabian Vu and Michael Leuschel. “Validation of Formal Models by Interactive Simulation.” In: Proceedings ABZ. LNCS 14010. 2023, pp. 59–69.

B2Program: Code Generation for Validation

• Domain-specific Visualization for
Static/Dynamic Export

• Static Export of Single Execution Trace for a
Formal Model

• Dynamic Export of Classical B Model to HTML
• Extension of B2Program by

TypeScript/JavaScript for Dynamic Export
• Early-stage validation by Domain Experts

without knowledge of formal methods (tools)
• Animation, Simulation, and Sharing of

Scenarios between Modelers and Domain
Experts with Feedback

• Fabian Vu, Christopher Happe, and Michael Leuschel. “Generating Domain-Specific
Interactive Validation Documents.” In: Proceedings FMICS. LNCS 13487. 2022, pp. 32–
49.

• Fabian Vu, Christopher Happe, and Michael Leuschel. “Generating interactive documents
for domain-specific validation of formal models.” In: International Journal on Software
Tools for Technology Transfer 6.2 (2024), pp. 147–168.

hhu.de 18

B2Program: Code Generation for Validation

hhu.de 19

Abstract Model
JS + HTML

Abstract Model Refinement 1 Refinement N Implementation…

Refinement 1
JS + HTML

Refinement N
JS + HTML

Implementation
JS + HTML

Refinement
Step

Code
Generation

Domain Expert
Validation

Feedback from
Domain Expert

Trace refinement for result adaptation

• Preserve desirable traces during
refinement

• Deal with renaming, stuttering and
skip

• Tool support
• Findings
• Helps to find counterparts
• May point out counterexamples

23

Fig. 1: Example output of the tool

Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace Refinement in B and Event-B. ICFEM 2022: 316-333
Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace preservation in B and Event-B refinements. J. Log. Algebraic Methods Program. 137: 100943 (2024)

Failure divergence refinement for result
preservation

• Failure-divergence refinement for
Event-B

• Proof that failure-divergence
refinement preserves trace
properties

• Implement tool support
• Less work for validation

• Results can be kept

24

Fig. 2: Successful failure divergence
refinement

Fig. 3: Unsuccessful failure divergence
refinement with counter example

Sebastian Stock, Michael Leuschel, Atif Mashkoor, and Alexander Egyed, Failure divergence refinement for Event-B, submitted to iFM 2024

Validation-driven development

• Making validation the objective
• How can we show the presence of the

requirements in the model?

• “A priori” workflow
• Formulate a VO
• Implement
• Verify
• Validate

• Validation becomes the driving force of
modeling process

26

Fig. 4: Validation focused
workflow

VDD - workflow

1. Finding a good model structure
a. Problem Frames to sort knowledge
b. Create refinement strategy
c. Plan VOs

2. A priori strategy
a) Implement model
b) Verify
c) Validate

3. Refine the model
a) Adapt VOs
b) Repeat 2)

27

AMAN Case Study (ABZ 2023)

• First application of VOs during the
development of a new, large formal model

• Comparison of a priori vs. a posteriori VO
development

• Validation using both automatic validation
tasks (model checking, trace replay, proof)
and manual ones (visualization)

• Use of VOs during modeling uncovered
unclear/ambiguous requirements

D. Geleßus et al. “Modeling and Analysis of a Safety-critical Interactive System through Validation Obligations.” In: Rigorous State-Based Methods. ABZ 2023. LNCS 14010. June 2023, pp. 284–
302.

28

Conclusion

• Verification and validation are equally
important activities and, hence, merit equal
attention

• The IVOIRE methodology puts validation at
the center of refinement-based development

• VOs can provide POs like semantics to the
concept of formal validation

29

IVOIRE 2022 (Lugano, Switzerland)

30

IVOIRE 2023 (Nancy, France)

31

References

• Atif Mashkoor, Michael Leuschel, Alexander Egyed: Validation Obligations: A Novel Approach to Check Compliance between Requirements and their Formal
Specification. ICSE (NIER) 2021: 1-5

• Jens Bendisposto, David Geleßus, Yumiko Jansing, Michael Leuschel, Antonia Pütz, Fabian Vu, Michelle Werth: ProB2-UI: A Java-Based User Interface for
ProB. FMICS 2021: 193-201 Fabian Vu, Michael Leuschel, Atif Mashkoor: Validation of Formal Models by Timed Probabilistic Simulation. ABZ 2021: 81-96

• Fabian Vu, Dominik Brandt, and Michael Leuschel. “Model Checking B Models via High-level Code Generation.” In: Proceedings ICFEM. LNCS 13478. 2022,
pp. 334–351.

• Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace Refinement in B and Event-B. ICFEM 2022: 316-333

• Fabian Vu, Michael Leuschel: Validation of Formal Models by Interactive Simulation. ABZ 2023: 59-69

• Sebastian Stock, Atif Mashkoor, Alexander Egyed: Validation-Driven Development. ICFEM 2023: 191-207

• David Geleßus, Sebastian Stock, Fabian Vu, Michael Leuschel, Atif Mashkoor: Modeling and Analysis of a Safety-Critical Interactive System Through Validation
Obligations. ABZ 2023: 284-302

• Sebastian Stock, Fabian Vu, David Geleßus, Michael Leuschel, Atif Mashkoor, Alexander Egyed: Validation by Abstraction and Refinement. ABZ 2023: 160-178

• Fabian Vu, Jannik Dunkelau, and Michael Leuschel. “Validation of Reinforcement Learning Agents and Safety Shields with ProB.” In: Proceedings NFM. LNCS
14627. 2024, pp. 279–297.

• Sebastian Stock, Atif Mashkoor, Michael Leuschel, Alexander Egyed: Trace preservation in B and Event-B refinements. J. Log. Algebraic Methods Program.
137: 100943 (2024)

32

